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Abstract—Alzheimer’s disease (AD) has traditionally been

regarded as a disease of the gray matter (GM). However,

the advent of diffusion tensor imaging (DTI) has contributed

to new knowledge about how changes in white matter (WM)

microstructure in vivo may be directly related to the patho-

physiology of AD. It is now evident that WM is heavily

affected in AD, even at early stages. Still, our knowledge

about WM degeneration in AD is poor compared to what

we know about GM atrophy. For instance, it has not been

clear if WM can be directly affected in AD independently of

GM degeneration, or whether WM changes mainly represent

secondary effects of GM atrophy, e.g. through Wallerian

degeneration. In this paper, we review recent studies using

DTI to study WM alterations in AD. These studies suggest

that microstructural WM affection at pre-AD stages cannot

completely be accounted for by concomitant GM atrophy.

Further, recent research has demonstrated relationships

between increased cerebrospinal fluid levels of Tau proteins

and changes in WM microstructure indexed by DTI, which

could indicate that WM degeneration in pre-AD stages is

related to ongoing axonal damage. We conclude that DTI

is a promising biomarker for AD, with the potential also to

identify subgroups of patients with especially high degree

of WM affection, thereby contributing to more differentiated

pre-AD diagnoses. However, more research and validation

studies are needed before it is realistic to use this informa-

tion in clinical practice with individual patients.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive

neurodegenerative disease defined by widespread

cognitive impairments accompanied by the presence of

neurofibrillary tangles (NFT) and amyloid plaques. The

clinical manifestation of AD is seen in the domains of

memory and spatial navigation in the early phases of the

disease, with affection of almost all cognitive domains

including executive function failure, emotional instability,

psychosis and both retrograde and anterograde amnesia

as the disease progresses. The clinical diagnosis of

‘‘probable AD’’ is typically only confirmed after death by

postmortem examinations with positive findings of

intraneuronal NFTs and extracellular aggregation of

amyloid-beta (Ab) in the formof plaques (Dubois et al., 2010).

AD has traditionally been considered a disease of the

gray matter (GM) of the brain, with white matter (WM)

affection often considered secondary to GM damage

(Roher et al., 2002). Even though evidence has

accumulated that WM is affected in AD (Brun and

Englund, 1986), the mechanisms of WM affection in AD

remain largely unknown, raising several questions:

- Is WM affection secondary to GM affection or can it

also be independent?

- What is the spatial and temporal dynamics of WM

affection in AD?

- How is WM degeneration related to other AD-biomark-

ers, especially cerebrospinal fluid (CSF) biomarkers of

amyloid-beta (Ab1-42), NFTs (hyperphosphorylated

Tau; p-Tau) and neurodegeneration (total Tau)?

http://dx.doi.org/10.1016/j.neuroscience.2014.02.017
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We will review recent research relevant for each of

these questions. Although there is currently much focus

on WM degeneration in AD, our knowledge is still

limited compared to what we know about GM atrophy

and other AD biomarkers.
CAN WM AFFECTION IN AD BE INDEPENDENT
OF GM DEGENERATION?

There are two main entry points to explain WM changes in

AD. WM damage can occur secondary to GM pathology

through Wallerian degeneration (Waller, 1850), i.e.

degeneration of axons separated from their cell bodies,

followed by slower degradation of the myelin sheath.

Secondary WM changes may be caused through

damage to GM, e.g. from accumulation of Ab in some

form, soluble oligomers, or less likely plaques (Zetterberg

et al., 2010), consistent with the amyloid cascade

hypothesis of AD (Hardy and Allsop, 1991), or through

Ab-independent pathways (Chételat, 2013; Herrup et al.,

2013). Cell death will in turn lead to axonal disruption in

WM tracts connecting the affected GM areas, exhibiting

Wallerian degeneration. Alternatively to the secondary

route, it is possible that different mechanisms can cause

WM degradation directly, independently of GM

pathology. Several lines of evidence suggest that some

of the changes seen in WM are not necessarily

secondary to GM changes in AD, but might also reflect

processes that originate in WM and play a direct role in

the pathogenesis of AD. We will present findings from

molecular neurobiology and in vivo neuroimaging

relevant for the discussion of WM affection in AD.

The first line of evidence for direct WM affection in AD

comes from molecular neurobiology. WM degeneration

independent of GM lesions has been found in AD in

neuropathological studies, attributed to vascular disease

(Brun and Englund, 1986), but has also been identified

in individuals without co-morbid vascular brain disease

(Sjöbeck et al., 2006). Elevated CSF Tau levels in

patients (see Info Box) could also be interpreted as

coherent with WM affection. Tau exists normally as a

family of microtubule-associated proteins, and is

primarily located in the axons. By its binding to tubulin,

Tau provides stability to, and promotes assembly of

microtubules, which are involved both in maintaining cell

structure and serve as tracks for axonal transport (Buée

et al., 2000). The binding process can be regulated by

phosphorylation and de-phosphorylation of the protein

(Lee et al., 1989). Hyperphosphorylation of Tau results

in the formation of insoluble paired helical filaments

which are the main constituents of NFTs, and the

resulting loss of binding to microtubule leads to

destabilization of axons and axonal degeneration,

decline in a range of neuronal functions, and ultimately

cell death (Iqbal and Grundke-Iqbal, 2008). While the

relationship between Ab load and NFTs seems

complex, and interactions between isoforms of the

proteins are plausible (Roberson et al., 2007; Hyman,

2011; Desikan et al., 2012; Manczak and Reddy, 2013),

the neurodegeneration and neurocognitive affection in

AD may be more strongly related to NFTs than amyloid
plaque load (Bennett et al., 2004). As Tau is found

primarily in axons, and DTI is sensitive to axonal

degeneration, this is supportive of microstructural

changes as indexed by DTI playing a central role in the

pathogenesis of AD. However, as discussed below,

axonal degeneration detectable by DTI is likely

occurring both within GM and WM. Further, axonal

degeneration, especially in WM, is likely more related to

total levels of Tau than the hyperphosphorylated Tau

that constitutes the NFTs. Also, increased CSF levels of

total Tau do not by themselves constitute strong

evidence for primary WM affection, since axonal

degeneration may result from even earlier processes,

including cell death. A recent very large study of 5542

cases found relationships between CSF biomarkers of

Ab, total Tau and phosphorylated Tau (p-Tau) and

neurofilament light, which is a protein expressed in

large-caliber myelinated axons (Skillbäck et al., 2013).

Although such results cannot be used to make strong

inferences about the temporal order or the direction of

causality between GM and WM affection, they highlight

that a robust relationship can be expected, and that WM

by no means is spared in the AD disease process.
Info box

In-vivo biomarkers of AD

Biomarkers can aid in early pre-symptomatic detection
of AD. This is crucial for selecting subjects for clinical drug
trials, monitoring disease progression, and for eective and
rapid treatment of patients. An ideal biomarker should be
highly sensitive and specific to the disease, be predictive
of the course, and be available without invasive
procedures. Two important classes of AD biomarkers
discussed in the present paper are structural
neuroimaging biomarkers and CSF biomarkers:

� Structural neuroimaging biomarkers

o Structural MRI: Degree of atrophy (volume or

thickness reductions) correlates with disease pro-

gression and cognitive decline, and is predictive

of conversion to AD.

o Diffusion tensor imaging: White matter microstruc-

ture changes are commonly found in MCI and AD,

and DTI shows promise as a stage-marker for AD.

� CSF biomarkers

o Ab 42: Reduced CSF Ab42 levels are believed to be

caused by the aggregation of Ab42 into plaques,

leaving lessAb freetodiuseintoCSF.CSFAb42lev-

els are also negatively correlated with plaque load

post mortem (Formichi et al., 2006), to PiB-PET

retention (Fagan et al., 2006) and has reasonable

sensitivity and specificity for the diagnosis of AD.

o Tau: Neurofibrillary tangles (NFTs) are believed

to be the result of abnormal processing (hyper-

phosphorylation) of the microtubule-associated

protein Tau which is primarily located in the

axons (Grundke-Iqbal et al., 1986). Levels of total

Tau (Tapiola et al., 1997) and P-Tau (Buerger

et al., 2006) measured in CSF correlate positively

(total Tau, r = 0.44; P-Tau, rho = 0.72) with post-

mortem neuropathological findings of NFTs in

the brain.
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Other findings suggesting the possibility that some
WM alterations are independent of GM pathology, and

might reflect processes closely linked to precipitating

factors in the emergence of AD, are altered levels of

molecules related to cytoskeleton maintenance and

cellular survival in WM of AD brains (Castaño et al.,

2013). Similarly, caspase-6 activity – a protease that

induces axonal degeneration and cleaves Tau and other

proteins – is raised early in AD (Klaiman et al., 2008). In

one study of healthy aged individuals, both Caspase-6

activity in entorhinal cortex and in the CA1 region of the

hippocampus, and Tau pathology predicted lowered

memory scores, while Ab did not correlate with any

cognitive test (Ramcharitar et al., 2013).

Oligodendrocyte cell death and reactive gliosis have

been demonstrated in AD (Englund and Brun, 1990),

and biochemical analyses have suggested that

extensive WM axonal demyelination is part of AD

pathology (Roher et al., 2002).

The second line of evidence comes from in vivo

neuroimaging studies, which is the focus of the present

review. DTI can be used to index different

microstructural properties of WM. The most frequently

used DTI metrics are fractional anisotropy (FA), a

measure of the degree of directionality of water diffusion

in the tissue, and mean diffusivity (MD), a measure of

the total diffusion in a voxel, also called the apparent

diffusion coefficient (see paper by Concha, (2014), for a

thorough discussion of the different diffusion properties).

By examining additional diffusion metrics, we are able to

obtain information about different properties of the

underlying WM than can be obtained from FA and MD

alone. Although the exact relationship between diffusion

metrics and the underlying neurobiology is highly

complex, diffusivity parallel to the principal eigenvector

(DA) might reflect axonal damage, and diffusivity

perpendicular (DR) to the principal eigenvector is likely

more affected by myelination, axonal diameter and

axonal packing (Beaulieu, 2002; Song et al., 2003).

While less exact than neuropathological studies, the real

advantage of neuroimaging is the ability to study the

human brain in vivo, offering opportunities to describe

the dynamics of disease progression longitudinally, and

to relate changes in WM microstructure to changing

levels of a range of other measures, both clinical and

biological.

DTI studies have shown at least partial statistical

independence between cortical atrophy in medial

temporal lobe structures and alterations in the

microstructure of connecting WM in AD (Salat et al.,

2010). Bosch and colleagues (Bosch et al., 2012) found

FA changes that could be explained by GM atrophy, but

in the same study reported that DR changes in several

regions were independent of GM atrophy, suggesting

possibly different mechanisms accounting for the

changes. In other studies, DTI changes are found to be

both dependent on, and independent of, GM atrophy

(O’Dwyer et al., 2011a; Alves et al., 2012), supporting

the possibility that WM changes can be independent of

GM changes in AD, but that more than one mechanism

might be involved. A study on the temporal dynamics of

208 I. K. Amlien, A. M. Fjell / Ne
GM and WM affection in AD showed widespread DTI

changes in mild cognitive impairment (MCI) and AD

compared to controls (Agosta et al., 2011). Interestingly,

while the correlations between WM and GM

abnormalities were widespread in the AD group,

WM-GM correlations were confined to the medial

temporal lobe in the MCI group, with changes in most

WM tracts being independent of GM atrophy. Similar

results were found in MCI patients in another study,

where microstructural WM damage in the fornix was

unrelated to hippocampal atrophy in early MCI, but WM

changes in fornix correlated with hippocampal atrophy in

subjects that had carried MCI longer (Zhuang et al.,

2013). A multi-modal study of MCI patients showed that

metabolism, morphometry and FA of selected WM

regions all contributed uniquely to explain memory

function, indicating that the metrics were sensitive to

different properties of brain pathology, all with cognitive

consequences (Walhovd et al., 2009). Thus, WM

microstructural differences with relations to memory

could not be explained by concomitant GM pathology. In

a study of regional WM volume, Salat et al. (2009)

showed reductions in early phases of AD, although it

was not directly tested whether these were independent

of GM changes.

Together, evidence from molecular neurobiology and

from human in vivo neuroimaging studies indicates that

WM abnormalities can be at least partly independent of

GM changes in the pathogenesis of AD. Although WM

and GM changes conceivably will be correlated in

progressed AD through, e.g. Wallerian degeneration, it

is possible that WM degradation and GM atrophy in

initial phases are caused by different events, or that a

joint mechanism affects both tissue types. Thus, there is

presently not convincing evidence that GM damage is

the only cause of WM degradation in early AD.

A theory considering WM damage as primary in AD is

the retrogenesis model formulated by Bartzokis et al.

(Bartzokis et al., 2007; Bartzokis, 2011), which builds on

previous works by Reisberg (Reisberg et al., 1999) and

Braak and Braak (Braak and Braak, 1991, 1997).

According to this model, the WM degeneration in AD is

the reverse of what is seen during myelogenesis. Early

myelinated, large-diameter fibers such as primary

sensory area axons are affected least and last, while

late-myelinated neocortical projection fibers are affected

early in AD. Oligodendrocytes that are differentiated late

in life myelinate more axonal segments per cell, as

opposed to axons myelinated early in life that might

have only one oligodendrocyte per myelin sheath. Given

an even rate of damage to oligodendrocytes across the

brain, this skewed ratio of myelin sheaths per

oligodendrocyte would in itself contribute to a

susceptibility of myelin breakdown in late myelinated

areas such as association tracts. Additionally, the model

proposes cholesterol and iron build-up as other risk

factors related to oligodendrocytes and demyelination.

Some DTI studies conclude in support of this theory

when comparing FA in late and early myelinated fiber

tracts in AD (Stricker et al., 2009) and in aging

(Brickman et al., 2012). Douaud and colleagues
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(Douaud et al., 2011) used the mode of anisotropy (MO)

to qualify the higher FA they found in MCI vs. controls in

an area of crossing fiber tracts, relating this to relative

sparing of one tract (early myelinated motor-related

projection fibers) compared to the affected crossing

association fibers in the late myelinated superior

longitudinal fasciculus (SLF).

While the above studies can be taken in support of the

retrogenesis model, other studies’ results are not always

in favor. According to a recent meta-analysis (Sexton

et al., 2011), the effect size for FA in the splenium of

the corpus callosum was greater than in the genu (see

further discussion of this study below). Following the

retrogenesis model, we would expect greater WM

alterations in the genu, as it projects to prefrontal cortex

and its myelination is more protracted than the

splenium, while the reported effect sizes hint at the

opposite pattern. Westlye and colleagues (Westlye

et al., 2010) determined age at peak FA to describe

whether WM tracts were early or late maturating. While

the authors observed relatively early maturation of the

CST, and protracted development of the dorsal and

parahippocampal cingulum as well as the uncinate

fasciculi, the timing of when deterioration started did not

fit the retrogenesis model well, as the dorsal cingulum

and uncinate fasciculus started deteriorating relatively

late. Thus, although the retrogenesis theory is intriguing,

the evidence so far is not conclusive.

Whether the retrogenesis theory holds or not,

cerebrovascular conditions – an important risk factor for

AD – are likely central in causing the observed WM

damage. However, while mild ischemic WM disease is

observed in about 50% of AD-cases (Englund et al.,

1989), the newly proposed diagnostic criteria for

probable AD from the National Institute of Aging–

Alzheimer’s Association workgroups specifically treat

substantial concomitant cerebrovascular disease as an

exclusion criterion (McKhann et al., 2011).

Cerebrovascular conditions and AD may be linked

through several relevant pathways, including a

relationship between cerebrovascular disorders and the

major genetic risk factor for sporadic AD, apolipoprotein

E4 (APOE4) (Zlokovic, 2013). Still, taking these new

criteria into account, we are urged to also look past

cerebrovascular disease in the search for pathogenic

mechanisms affecting WM in AD. The effects of

cerebrovascular disease on WM degeneration in AD will

therefore not be discussed specifically in this paper.
WHAT IS THE SPATIAL AND TEMPORAL
DYNAMICS OF WM AFFECTION IN AD?

Having established that WM is affected in AD, and

possibly not just dependent on GM pathology, the

regions commonly affected and the temporal dynamics

of WM changes in AD are important to investigate.

Sexton et al. (Sexton et al., 2011) published the first

meta-analysis on cross-sectional DTI-studies on AD and

MCI. The authors reported data from every study

published until February 2010 that compared FA or MD

between either AD or MCI and healthy controls, and
reported region of interest (ROI)-based results. The total

number of studies was 41, with a total of 2026

participants (617 with AD, 494 with MCI, and 915

controls). The meta-analysis confirmed the commonly

reported widespread findings of reduced FA/increased

MD in AD and MCI vs. controls. When comparing FA

between AD and controls, large effect sizes were

reported in the uncinate fasciculus and SLF, medium

effect sizes in the genu and splenium of the corpus

callosum, frontal- and temporal WM. Effect sizes in the

cingulum ranged from small in middle cingulum, medium

in anterior and parahippocampal parts, to large in

posterior cingulum. The pattern was similar for

comparisons between MCI and controls, although

different ROIs were examined.

For MD, significant differences between both AD and

controls, and between MCI and controls, were found in

most all areas studied. The largest effect sizes were

located to the hippocampus, and temporal and parietal

areas. Studies using Tract-Based Spatial Statistics

(TBSS) (Smith et al., 2006) or other voxel-based whole-

brain analysis methods were not taken into account in

the meta-analysis. When methods enabling more

specific localization are employed, the affected areas

are quite consistently reported in the literature as

overlapping with WM areas connecting regions of the

episodic temporo-parietal memory network (Buckner

and Wheeler, 2001), including the hippocampus,

entorhinal, retrosplenial, posterior cingulate and

precuneus cortices (Damoiseaux et al., 2009; Acosta-

Cabronero et al., 2010; Huang et al., 2012).

In addition to FA and MD, one would expect to see the

same pattern of differences between AD and controls as

reported by Sexton and colleagues for the absolute

diffusion metrics DR and DA. Additionally, the

examination of DR and DA lends the possibility for more

complex patterns of change in diffusion metrics to be

revealed. An increase in FA may be caused either by

increased DA, decreased DR, or a combination of the

two. An increase in MD can be caused by an increase

in any of the three eigenvectors, with or without

decreases in the other eigenvectors. It is unlikely that

identical mechanisms underlie change in different DTI

indices, although a fair degree of overlap is to be

expected between these dependent measures (Song

et al., 2003). Increased DR in temporal, frontal and

parietal regions is commonly reported in AD (Huang

et al., 2007). It seems also that the effects are

somewhat larger when the absolute diffusion metrics DR

and MD, are considered, than the commonly employed

composite measures of FA. When considering studies

analyzing DA, less consistent results make findings in

this DTI metric more difficult to interpret (Agosta et al.,

2011; O’Dwyer et al., 2011b; Huang et al., 2012).

Although low DA has been related to axonal

degeneration in rodent models (Song et al., 2003), a

human histology study showed that DA follows a

complex, non-monotonous trajectory of change after

axonal injury (Concha et al., 2006), and DA has also

been reported to increase with age (Madden et al.,

2012). Thus, changes in DA seem more complex to
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interpret than the other metrics. If increased DA is

observed in AD, this will also contribute to reduce group

differences in FA, and DR and MD may thus potentially

be more sensitive biomarkers of WM-injury in AD.
LONGITUDINAL DTI STUDIES OF MCI AND AD

Few longitudinal studies on DTI in MCI and AD samples

have been published, and the sample sizes are still

small. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) include DTI in its protocol for ADNI-2 and ADNI-

go (Jack et al., 2010), and it may not be until the

datasets are released from such multicenter projects

that we will see the first large longitudinal follow-up

studies on DTI in MCI and AD.

The few studies we are aware of examining DTI in

MCI longitudinally still provide some insight into the

pathological processes in WM in AD and MCI patient

groups. In a study by Teipel and colleagues (Teipel

et al., 2010), FA reductions were reported in the corpus

callosum in MCI subjects after approximately one year,

but no significant differences between MCI and healthy

controls with regard to change over time was reported.

Three groups of 25 each MCI, AD patients and controls

were followed up over the course of 12 months, at four

different time-points by Mielke and colleagues (Mielke

et al., 2009; Nowrangi et al., 2013). Stable cross-

sectional differences between controls and AD were

evident throughout all time-points in the splenium of the

corpus callosum and in the fornix (lower FA and higher

MD in AD), while MCI did not differ significantly from

controls. Longitudinally, however, the MCI group did

show greater MD increase in the fornix than controls,

while the AD group did not show larger change in DTI

measures than the other two groups. There were no

between group differences in FA change over time. In

another study examining DTI longitudinally in AD

patients, the authors reported FA reductions and DR

increases in the uncinate fasciculus in the AD patients

over a period of 1.5 years compared to baseline

(Kitamura et al., 2013). The DTI changes were

unfortunately not compared to changes in the control

group, making it challenging to tell if these are WM

changes that could also be seen in normal aging or

whether they were specific to AD. The findings by

Kitamura et al. are supported by the results from a

study using combined cross-sectional and longitudinal

samples (Acosta-Cabronero et al., 2012). In the early

stages of AD, only DA and MD were elevated compared

to healthy controls. As the disease progressed, DA

seemed stable while DR increased, and as a result FA

was reduced. This pattern was shown when comparing

early stage AD with later stage AD, both cross-

sectionally and longitudinally over 12 months (Acosta-

Cabronero et al., 2012). A similar pattern has been

reported by our research group (Amlien et al., 2013).

Widespread cross-sectional DTI differences between

MCI and controls in FA, MD and DR were detected both

at baseline and at follow-up after 2.5 years, while

differences in DA were only evident at baseline. When

we analyzed longitudinal changes, the same pattern
was found, with MCI showing greater changes in DR

and FA than controls over time, and DA being relatively

stable (see Fig. 1).
HOW ISWMDEGENERATION RELATED TO CSF
BIOMARKERS OF AD?

CSF measures of Tau proteins may be the most relevant

to relate to microstructural WM changes in early AD.

While the Tau measured in CSF probably stems from

diffusion from intracellular space, the precise

mechanisms for this leakage is unknown. CSF Tau

levels seem to reflect the extent of ongoing axonal

damage, and rapidly elevated levels are seen in acute

conditions as stroke where Tau levels are correlated

with infarct size (Hesse et al., 2000). Following

traumatic brain injury, sharply increased levels of CSF

Tau are measured in the acute phase, followed by a

relationship between patient improvement and

normalization of CSF Tau levels (Zemlan et al., 2002).

As a marker of acute axonal injury, we would expect to

find elevated CSF Tau levels early in the AD

pathogenesis if axonal disruption or damage is indeed

an early upstream event. It is possible that ongoing

axonal damage in AD leads to an increased and

measurable leakage of Tau to CSF, but small-scale

axonal damage needs to accumulate over time for it to

affect WM microstructure to a degree that can be

detectable by DTI with current methods. Axonal

degeneration inducing detectable changes in WM

microstructure would likely cause elevation of CSF

levels of total Tau, not necessarily hyperphosphorylated

Tau, which primarily are found intracellulary in GM

neurons. Still, results from the large study by Skillbäck

et al. (2013) demonstrated relationships between CSF

biomarkers of both Ab42, total Tau as well as p-Tau and

subcortical axonal damage as indexed by neurofilament

light.

Recently, several research groups have been working

to elucidate the relationship between CSF Tau and WM

microstructure changes in AD and MCI. Comparing

subjects with stable, non-progressing MCI with subjects

with MCI who progressed to probable AD in >2 years,

Douaud and colleagues (Douaud et al., 2013) found DTI

differences at baseline in the left hippocampus, and in

WM in the fornix and in the left fimbria, as well as in the

SLF. While the DTI measure in the hippocampus was

the best single predictor of conversion to AD with 77%

accuracy, the combination of CSF Tau, volume and

diffusion measures yielded 91% classification accuracy

(85% sensitivity, 96% specificity). Another study

compared baseline measures of DTI and CSF in

declining vs. stable MCI patients over a two to three

year period, and found that while DTI was the best

predictor of both later MTL atrophy and cognitive

decline, CSF total Tau (but not Ab42 or P-Tau) was

also significantly related to cognitive decline (Selnes

et al., 2013). The relationship between DTI and

cognitive decline in this sample was significant for DR,

MD and FA in parahippocampal WM, where the effects

also were largest. For the other tested WM ROIs



Fig. 1. Differences in WM microstructure detected by DTI in MCI patients. Different diffusion metrics can be used to differentiate patients with MCI

from healthy controls. Effects are often especially strong for MD and DR. Data from Amlien et al. (2013).

Fig. 2. Reduction of radial diffusion in MCI. Three-dimensional

rendering of areas of the WM where MCI patients have larger radial

diffusion than age-matched controls. As can easily be seen, effects

are widespread across WM. Data from Amlien et al. (2013).
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(entorhinal, retrosplenial, posterior cingulate, precuneus,

supramarginal, middle temporal), a significant

relationship was found (except for middle temporal WM)

for DR and MD, but not for FA. Employing cross

sectional methods, Stenset et al. (2011) reported higher

DR and lower FA in posterior cingulate for MCI patients

with pathological elevated CSF total Tau levels vs. MCI

patients with non-pathological CSF total Tau levels. This

initial study led us to follow up the sample longitudinally

to explore whether the differences in WM microstructure

were still developing or just preexisting at this stage of

AD progression. We found that patients with

pathological levels of CSF Tau had greater FA

reductions and DR increases in the right cingulum and

SLF relative to controls over time, but this was not

found in MCI patients with non-pathological CSF Tau

levels (Amlien et al., 2013) (see Fig. 2). This can be

interpreted as meaning that those MCI patients with the

highest level of on-going axonal degeneration, as

evidenced by their pathological levels of CSF Tau, also

showed the most rapid deterioration of WM.

While the above studies examined changes in

patients with diagnosed AD or MCI, by the time AD and
MCI have been diagnosed, the disease has already

taken a significant toll on the brain. By studying
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preclinical changes in WM in at-risk populations, new

insights into the possible early events leading to AD and

MCI can be made. In a group of healthy adults with a

familial history of AD, CSF Tau and Tau/Ab42 ratio at

baseline was related to WM microstructure 3.5 years

later in areas adjacent to GM structures typically

affected in early AD (Bendlin et al., 2012). Higher CSF

levels were related to higher MD, DR and DA in WM

adjacent to the hippocampus, but not to FA, and not to

GM measures. The authors hypothesize that early AD

pathology involves axonal or myelin degeneration, while

cortical involvement is not detectable until a later stage.

In a similar study, Xiong and colleagues (Xiong et al.,

2011) examined cognitively normal adult subjects with a

familial history of AD, representing a group of subjects

with increased probability of being at a prodromal stage

of AD and possessing genetic risk factors. At this very

early stage, a familial history of AD was associated with

age-related reductions in CSF levels of Ab42, indicating
higher brain levels of b-amyloid. The presence of an

APOE4 allele was also related to decreased levels of

Ab42, but this decrease was stronger in individuals with

a family history of AD. While brain volumetric measures

did not differ between the groups, subjects with a family

history of AD had lower FA in the genu and splenium of

the corpus callosum than subjects without a familial

history of AD, and for subjects over 55 years, a family

history of AD was related to higher CSF total Tau. The

above studies provide indications that microstructural

WM changes are promising candidate biomarkers for

the early detection of AD. Simultaneously, these studies

on subjects with risk factors for AD accentuate a

limitation that is prevalent in the AD literature. When

there is no follow-up of the at-risk normal participants or

the MCI patients, it is unknown for how many subjects

in a given sample onset of AD is causing the symptoms.

Studies of MCI patients without follow-up examinations

will include highly heterogeneous samples of individuals

both with and without a prodromal AD. Optimally,

researchers should have the patience to collect at least

clinical follow-up data over a long enough period of

time, before making strong conclusions on the biology of

AD. However, when the aim is to identify the earliest

markers of the disease, conversion may take several

years, at least up to 10 years in some cases, making

such studies rare (for important exceptions, see e.g.

Driscoll et al., 2009). For DTI, no such studies yet exist.
TARGETS OF INVESTIGATION: BEYOND THE
WM-GM DISTINCTION?

DTI metrics seem to be sensitive to pathological WM

changes in AD. For different reasons, DTI are much

more seldom used to track changes in GM structures,

and especially within the cortex. However, there are

reasons to expect that some of the pathology detected

in WM could potentially also be detectable in GM. For

instance, a recent study used T1/T2 contrast to map

myelin content within the cortex (Grydeland et al.,

2013). Glasser and Van Essen (2011) showed that by

exploiting the inverse sensitivity of the T1 and the T2
signal to myelin, it was possible to map myelin content

continuously across the cortical mantle. Grydeland et al.

(2013) demonstrated an increase in myelin content

through childhood development. This was reversed in

aging with declining myelin content among older adults.

Interestingly, mapping MD from the same voxels

showed largely overlapping trajectories. This indicates

that MD was related to the same events that caused the

myelin content measure to change through life.

Interestingly, Cherubini et al. (2010) showed progressive

increased MD in the hippocampus, amygdala and

caudate in groups of patients with amnestic MCI and

mild AD compared to healthy elderly. Thus, although

seldom done, there seems to be a great potential for

using DTI metrics to measure microstructural alterations

also within GM structures. Thus, the neurobiological

events detected by DTI scans of WM could be

envisioned to also take place in GM. Consequently,

investigations testing whether WM in some instances

could be selectively affected in very early phases of AD

independently of GM should ideally test both tissue

classes with the same measures. The possibility that

DTI sometimes is more sensitive to early pathology than

T1-weighted imaging can thus not easily be interpreted

as WM being more affected than GM in general.

However, it may be more fruitful to go beyond the

distinction of WM and GM, and rather discuss the

underlying processes that can be more or less

manifested across both WM and GM (see e.g.

Grydeland et al., 2012).
CONSIDERATIONS IN INTERPRETING DTI
CHANGES IN AD RESEARCH

One needs to exhibit caution when interpreting absolute

diffusion metrics, and it is complicated to attribute

underlying biological processes to changes in the

measured diffusion metric. This is especially true for

diffusion in the principal direction, DA, as this metric is

both complex to interpret and seems less reliable than

the other metrics (Danielian et al., 2010). Still, several

animal studies have demonstrated distinct temporal

patterns of diffusivity change during the course of

Wallerian degeneration following ischemia, with acute

reduced DA caused by axonal damage followed by

chronic increase in DR caused at least in part by myelin

breakdown (Song et al., 2002, 2003; Sun et al., 2008;

Liu et al., 2013). While the effects of specific axonal

damage seem reasonably well described, the effects of

the diffuse damage caused by neurotoxins show

differing results, possibly due to different effects of the

neurotoxin studied. Reductions of neurofibrils with intact

myelin sheaths in rats by methylmercury led to

increased DA, while other DTI metrics remained stable

(Kinoshita et al., 1999). Disruption of the axonal

cytoskeleton in rats by the neurotoxin

iminodipropionitrile led to measured reductions in DA,

while DR remained stable (Shepherd et al., 2001). While

the results are not conclusive in one direction or the

other and probably dependent on which axonal

structures are affected by the neurotoxins, as well as



I. K. Amlien, A. M. Fjell / Neuroscience 276 (2014) 206–215 213
the nature of the lesions, the results provide a good

indicator that DA and DR can be independently affected

when components making up the axon are disrupted

(Beaulieu, 2002). Thus, although FA and MD may be

the most often employed measures of WM degeneration

in early AD, additional information can be obtained by

also studying DR, and possibly DA.

However, while the pathological mechanisms behind

diffusion tensor changes are rather well explored in

animals, one cannot infer the same pathological

mechanisms from animal models alone. Relating DTI

changes in humans to other biomarkers, for example

CSF levels of total Tau, with known neurobiological

mechanisms is thus important, as information from two

vectors, both the animal model and knowledge of the

neurobiology, can be used to support the claims.

Exploring such relations can therefore be very useful for

generating hypotheses explaining the mechanisms

behind the observed changes.
SUMMARY AND CONCLUSION

WM changes are detectable at an early stage of the AD

pathogenesis, with indications that WM microstructure

changes are not always secondary to GM degeneration

in AD. Evidence so far indicate that WM and GM

degeneration to a certain extent can be disentangled in

early stages of the disease, while stronger relationships

are more likely at later stages when the degree of GM

atrophy has progressed. We suggest to look beyond the

distinction between WM and GM per se, and also

investigate common and non-common neurobiological

events across tissue classes (Grydeland et al., 2013).

Combined with CSF total Tau, DTI measures of WM

microstructure can be used to aid in prediction of which

MCI patients will progress to probably AD. However,

more research and validation studies are needed before

it is realistic to use this information in clinical practice

with individual patients. Developing DTI further as an

early biomarker for AD has the potential to lead to

improvements in monitoring disease progression, to be

used in an enrichment strategy for sample selection and

outcome measures in drug trials, and to open up early

windows for drug treatment. It is also possible that DTI

can be used to identify subgroups of MCI patients with

especially high degree of WM affection, thus

contributing to better differentiated pre-AD diagnoses.
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