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Abstract.
BACKGROUND: Magnetic resonance imaging (MRI) has brought about advances in the fields of brain plasticity and lifespan
brain change, that might be of special interest for cognitive rehabilitation research and, eventually, in clinical practice. Parallel,
intensive cognitive training studies show promising results for the prospect of retraining some of the impaired functioning following
acquired brain injury.
OBJECTIVES: However, cognitive training research is largely performed without concurrent assessments of brain structural
change and reorganization, which could have addressed possible mechanisms of training-related neuroplasticity.
METHODS: Criticism of cognitive training studies is often focused on lack of ecologically valid, daily-living assessments of
treatment effect, and on whether the applied cognitive measures overlap too much with the training exercises. Yet, the present paper
takes another point of view, where the relevance of recent MRI research of brain plasticity to the field of cognitive rehabilitation
is examined.
RESULTS: Arguably, treatment ought to be measured at the same level of the International Classification of Functioning, Disability
and Health model, as it is targeting. In the case of cognitive training that will be the “body structure” and “body function” levels.
CONCLUSIONS: MRI has shown promise to detect macro- and microstructural activity-related changes in the brain following
intensive training.
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Recent advances within the field of magnetic res-
onance imaging (MRI) are likely to change our
knowledge concerning brain injury impairments, recov-
ery and rehabilitation in at least two important areas:

1) MRI might be used to monitor rehabilitation-
induced brain plasticity processes, measuring
treatment effects at a macro- and microstruc-
tural level while the patient is undergoing the
intervention.

2) Detailed information from brain mapping studies
will be available, and may link neural structures
and networks closer to specific brain functions.
In turn, this can better explain and clarify the
relationship between lesions and their symptoms,
especially in areas difficult to assess by tradi-
tional tests, like executive functions, personality
and cognition-emotion interactions. Moreover,
injury localization and size assessed by structural
MRI (sMRI) may predict more reliable recovery
trajectories.

Current brain injury rehabilitation guidelines are at
large characterized by lack of efficient treatment for
reinstatement of impaired brain structures and func-
tions (for reviews, see Cicerone et al., 2000; Cicerone
et al., 2005; Cicerone et al., 2011). Certainly, well-
documented patient stories like the one of Henry Gustav
Molaison (who until he passed away in 2008 foremost
was known as H.M.), have shown that damage to partic-
ular brain structures may cause lifelong loss of cognitive
function (Corkin, 2002; Corkin, Amaral, Gonzalez,
Johnson, & Hyman, 1997). However, most cognitive
functions are associated with large networks of brain
areas, which might be partly anatomically overlapping
(Alvarez & Emory, 2006; Ptak, 2012; Schlosser, Wag-
ner, & Sauer, 2006) and functionally interlinked (e.g.
Hester & Garavan, 2005). Unless an injury or ablation
have harmed a highly critical structure, as in the special
circumstances of Mr. Molaison, may cognitive func-
tions prove to be – at least to some extent – adaptable to
lesions? Recently, intensive post-injury cognitive train-
ing programs have shown promising results, both for
attention and working memory (computerized cogni-
tive training; Johansson & Tornmalm, 2012; Lebowitz,
Dams-O’Connor, & Cantor, 2012; Lundqvist, Grund-
strom, Samuelsson, & Ronnberg, 2010; Westerberg
et al., 2007) and executive functions (e.g. Goal Manage-
ment Training in combination with other interventions;
for recent reviews, see Krasny-Pacini, Chevignard, &
Evans, 2013; Manly & Murphy, 2012).

1. MRI based measures as an outcome measure
of intensive training

The traditional measurements applied in cognitive
rehabilitation, such as neuropsychological assess-
ment, structured observation, clinical interviews and
self-report questionnaire, do not provide specific infor-
mation about what that happens at a brain structural
level in response to treatment. In this sense the brain is
still only a “black box” for which our only concern is
what output (effect) that follow an input (treatment) (for
reflextions on traditional behavioral psychology and the
new brain sciences, see Skinner, 1989).

Clinical MRI is mainly based on radiologists’ qual-
itative expert opinion regarding presence or absence
of abnormalities in the brain images. Recent advances
have made it possible to monitor neural irregularities
not evident even to the trained eye (e.g. Grydeland
et al., 2010), and MRI based techniques for quanti-
fying sensitive regional volumetric and morphometric
properties of the brain have been used in several
studies investigating activity-induced brain plasticity
processes. Draganski and colleagues showed that grey
matter volume in task-relevant brain areas increased in
response to intensive learning of a new skill (juggling)
(Draganski et al., 2004). This finding has later been
replicated and further explored by others (Driemeyer,
Boyke, Gaser, Buchel, & May, 2008). Training-induced
grey matter changes have later been found after learn-
ing of mnemonic techniques (Engvig et al., 2010),
intensive studying (Draganski et al., 2006), and prac-
tice of a computerized spatial task (Haier, Karama,
Leyba, & Jung, 2009). Further, substantial activity-
dependent plasticity of white matter microstructure
have been found (Fields, 2008; Scholz, Klein, Behrens,
& Johansen-Berg, 2009), including following working
memory training (Takeuchi et al., 2010) and learning
of mnemonic techniques (Engvig et al., 2012). In rela-
tion to brain injury rehabilitation, data are limited, but
one recent study using diffusion tensor imaging (DTI)
found significant white matter changes in right arcuate
fasciculus in patients with Broca’s aphasia undergoing
speech therapy (Schlaug, Marchina, & Norton, 2009),
and a single case study showed white matter changes
corresponding with computerized cognitive training
phases following stroke (Nordvik et al., 2012). As illus-
trated by the latter two studies, advanced MRI based
measures might be used as an outcome endpoint after
brain injury rehabilitation interventions, in particular
treatment targeting the “body structure” and the “body
function”-levels of the International Classification of
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Fig. 1. For figure caption see the original article, Whyte and Barrett (2012). The digits next to the arrows represent a theoretical weighting of how
much that factor contribute to the level above. Reprinted with permission from the publisher.

Functioning, Disability and Health (ICF) classification
system (Stucki, 2005). Whyte and Barrett (2012) argue
that interventions ought to be assessed at the same level
as they are designed to target in the ICF-model. This
suggests that for example activity training should be
assessed by outcome measures developed for assess-
ment of participation in and performance of activities,
while cognitive training ought to be assessed at the body
structure and function level. Transfer effects to higher
and lower levels of the model is likely occur, however,
the observable outcome of a specific intervention at a
different level might be influenced also by other factors
independent of the intervention (see Fig. 1; from Whyte
& Barrett, 2012).

2. Prognostic predictions based on functional
and structural brain mapping

A key postulate of brain injury rehabilitation is the
notion of a close relationship between brain struc-
tures and brain functions. Even though the exact links
between brain structural entities and neural activity, and
cognitive and emotional properties are yet to large a
mystery, MRI based methods show promise in disen-
tangling some aspects of this relationship, and in the
years to come the body of evidence is likely to be grow-

ing. Still, novel discoveries based on MRI methodology
have already illustrated how prognostic predictions
regarding cognitive impairments, can be made: Uni-
lateral spatial neglect is a common cognitive sequelae
after right-hemisphere stroke (Kleinman et al., 2008).
Lesions in the parietal lobe are known to be associated
with neglect (e.g. in the inferior parietal lobule; Ptak
& Schnider, 2011), but which substructures within that
region that is essential to visual attention have not been
clear (Thiebaut de Schotten et al., 2012). Thiebaut de
Schotten and colleagues (2012) combined information
from a new DTI-based brain atlas of white matter path-
ways (Thiebaut de Schotten et al., 2011) with MRI data
and neglect test results obtained from a sample of 58
right hemisphere stroke patients. The findings showed
that lesions in one of the three branches of the superior
longitudinal fasciculus (SLF) were the best predictors
of left visual field neglect (see figure below).

The prevalence of unilateral spatial neglect is
reported to increase with age in both genders, partic-
ularly from the age of 60 and onwards (Kleinman et al.,
2008). This finding suggests a possible link between
occurrence and the timing of a brain injury, and the
severity of corresponding cognitive sequelae. Recently,
MRI studies have brought about new knowledge about
normal brain microstructural and cognitive develop-
ment from early childhood and across lifespan (for a
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Fig. 2. For figure caption see the original article, Thiebaut de Schotten and colleagues (2012). Reprinted with permission from the publisher.

review, see Fjell & Walhovd, 2010). The exact interplay
between brain developmental processes and acquired
brain injury are still not fully understood. Knowledge
derived from brain mapping studies of normal develop-
ing and aging brains may in the future help to predict
how the timing of the injury (age of the patient) inter-
acts with normal trajectories of brain structural and
cognitive change (for recent review on neuroimaging
and neurorehabilitation outcome in pediatric traumatic
brain injury, see Wilde, Hunter, & Bigler, 2012).

The focus of cognitive rehabilitation ought to be
the needs and the goals of the individual patient, and
her/his family and social network. The diversity and
complexity of injury-related issues in the life of patients
seem to be best addressed with a comprehensive, holis-
tic treatment approach. Hence, there are reasons for
warning against a constricted focus only on impair-
ment training in cognitive rehabilitation, like Barbara
Wilson and colleagues do: “[R]ehabilitation has moved
well beyond the drills and exercise approach. We no
longer find it acceptable to sit people in front of a com-
puter or workbook in the belief that such exercises will
result in improved cognitive, and more important, social
functioning” (p. 1; Wilson & Gracey, 2009). How-
ever, in light of the recent advances in neuroimaging
studies of brain plasticity, it still might be that inten-
sive, repetitive cognitive training, can play an important
role in a comprehensive brain injury rehabilitation pro-
gram, as recently recognized by Keith D. Cicerone in
his Coulter Memorial Lecture (Cicerone, 2012). The
appropriate measures of such training will, according
to Whyte and Barrett (2012), be methodologies address-
ing the same level in the ICF model, i.e. body structure
and body function. Advanced MRI offers the – until
recently impossible – prospect of “in vivo” monitoring
of treatment-induced neuroplasticity at a brain struc-
tural and functional level.
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