
times higher in MCI and AD patients compared with healthy
older adults (McDonald et al. 2009), and entorhinal atrophy is
a major risk factor for AD. Thus, in AD patients, entorhinal
atrophy likely represents a mixture of normal age-related
changes and additional neurodegeneration specific to the
disease, causing decline at a faster rate.

The relationship between the entorhinal changes and
changes in memory performance suggests that non-AD mech-
anisms in AD-prone areas are still causative for cognitive
reductions in healthy older adults. Previous studies have
shown relationships between medial temporal structural
changes and memory in healthy participants (Rodrigue and
Raz 2004; Murphy et al. 2010; Persson et al. 2012). The
present results further indicate that entorhinal atrophy may be
unrelated to AD pathology, while still being predictive of
memory changes. To explain this association, further research
needs to focus on neurobiological mechanisms for cognitive
reductions that do not include AD pathology. Interestingly,
the few studies of healthy controls that have tested the
relationship between in vivo biomarkers for amyloid and
atrophy generally do not find relationships in the medial tem-
poral lobes (Storandt et al. 2009; Fjell, Walhovd, Fennema-
Notestine, McEvoy, Hagler, Holland, Blennow et al. 2010;
Tosun et al. 2010; Becker et al. 2011), although the results
sometimes are complex (Bourgeat et al. 2010, Chetelat, Ville-
magne, Bourgeat et al. 2010; Chetelat, Villemagne, Pike et al.
2010). In contrast, relationships between amyloid biomarkers
and atrophy in MCI and AD are found mostly in the temporal
lobes (Fjell, Walhovd, Fennema-Notestine, McEvoy, Hagler,
Holland, Brewer et al. 2010). Thus, it is possible that atrophy

in the entorhinal cortex in healthy older adults can occur
without being related to the same mechanisms that cause
atrophy in AD. In principle, a threshold of cortical thickness
or the rate of atrophy could represent dementia, with the en-
torhinal atrophy of the low-risk participants in the present
study being well below such a threshold. However, even
though the rate of entorhinal decline is a continuous measure
that varies across a clinical spectrum from normal to MCI to
AD, this does not imply that the underlying mechanisms
causing the atrophy are similar. Entorhinal cortex is vulner-
able both to AD and healthy aging, with detrimental impact
on memory function in both, but the etiology may at least be
partly different.

More puzzling than the increased rate of estimated entorh-
inal atrophy in older age was the finding of increased esti-
mated change in lingual, pericalcarine and lateral occipital
cortices, and areas involved in visual perception. These
regions maturated relatively early in development (Shaw et al.
2008; Tamnes et al. 2010; Westlye et al. 2010a), and thus
could be expected to be more resilient to the influences of
normal aging. The deviations from linearity in these areas,
however, were modest, and a linear model explained the data
reasonably well. More research is needed to understand these
effects.

Linearity of Brain Aging: Longitudinal Changes in
Advanced Age
In contrast to cross-sectional analyses, which are based on
age “differences,” longitudinal designs can be used to assess

Figure 6. Nonlinear lifespan trajectories with Alzheimer patients included. Age trajectories for the OASIS subsample (n=309), with an addition of patients (n=96) with mild
AD in an attempt to mimic the effect of undetected dementing disorder. The healthy controls are illustrated with green dots and the AD patients with pink dots. With the
exception of the entorhinal cortex, inclusion of AD patients had relatively minor impacts on the estimated lifespan trajectory for each cortical area. x-Axis values represent the
mean thickness across hemispheres, corrected for the in� uence of sample (Z-scores), and the y-axis represent age in year. ROIs are displayed on a semi-in� ated template brain
surface.
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“changes” in cortical thickness (Pfefferbaum et al. 1998;
Resnick et al. 2003; Raz et al. 2005; Driscoll et al. 2009; Fjell,
Walhovd et al. 2009; Raz et al. 2010; Schuff et al. 2012).
Drawing inferences about age changes from cross-sectional
data alone rests on the assumptions that cohort effects do not
exist in the sample, that sampling bias is not correlated with
age and that individual development can be captured by
population analyses (Lindenberger et al. 2011, see also
Maxwell and Cole 2007). Several authors have warned about
the fallacies involved in drawing inferences about change
from cross-sectional data alone (Nyberg et al. 2010; Raz and
Lindenberger 2010, 2011; Lindenberger et al. 2011). When it
comes to lifespan studies of brain structures, however, no
fully satisfactory solution to this problem exists, and most
agree that mean age trends and age-independent individual
differences in general can be delineated from cross-sectional
data (Raz and Lindenberger 2011). Longitudinal examinations
over extended time intervals are not feasible with MRI, and
the best compromise may be to combine cross-sectional and
longitudinal analyses.

In the present study, the longitudinal results in general sup-
ported the main findings from the cross-sectional analyses.

However, there were also important differences between the
longitudinal and cross-sectional results. First, longitudinal
change estimates were substantially higher than the cross-
sectional estimates, which corresponds to previous reports
(Raz et al. 2005). Given identical thickness estimation tech-
niques, no differences in sample and no covariance between
sampling bias and age, the change estimates should be close
to identical. When profound differences are found, these may
be due to one or more of these 3 factors. First, longitudinal
change estimates are based on intrasubject surface registration
procedures that yield superior accuracy compared with the in-
tersubject cross-sectional procedures, reducing noise and
error estimates (Reuter et al. 2012). As noise tends to reduce
effect sizes, this could potentially explain some of the differ-
ences in estimates between methods. One approach to esti-
mate the importance of this factor would be to reprocess
longitudinal data with both methods and compare the results.
Second, sample differences, including differences in scanning
protocols, contribute to explain why the deviations between
the longitudinal and the cross-sectional estimates were larger
for the full sample >60 years compared with the cross-
sectional estimates from longitudinal sample itself. Finally,
covariance between sampling bias and age likely accounts
for the remaining differences between the longitudinal and
the cross-sectional change estimates. If the older adults
with the highest age are less typical for their age compared
with the older adults with the lowest age, then this may bias
the cross-sectional analyses, even when the same participants
are included in the longitudinal and the cross-sectional ana-
lyses. We suspect that this may account for the apparent pres-
ervation or thickening of ACC observed cross-sectionally but
not longitudinally, raising serious questions about the validity
of this observation. The present results, in accordance with
volumetric findings (Raz et al. 2005), indicate that cross-
sectional designs may underestimate the real change in corti-
cal thickness in aging. With the exception of ACC, this seems
mostly to be a scaling issue and does to a lesser degree seem
to bias the topographical distribution of effects. This may vary
between samples and studies, and represent an important
venue for future research. In any case, most trust should be
put on effects that are replicated across both longitudinal and
cross-sectional analyses. For instance, thinning of entorhinal
cortex was observed across samples and methods, supporting
the importance of this finding. Unfortunately, longitudinal
data were available for the oldest part of the age range only,
and longitudinal samples with wider age ranges will be an
important improvement to seek in future studies.

Conclusion

The cross-sectional estimates suggest that cortical thickness in
most areas declines linearly with age, and longitudinal data
confirmed the main pattern of effects for the oldest part of the
sample. There are several ways to envision the mechanisms
behind the mostly linear course of estimated cortical thinning.
One view is that a universal, programmed linear process
drives the thinning. More likely, however, brain aging is a
process characterized by dynamic equilibrium of multiple
linear and nonlinear degenerative and restorative processes
causing an apparent linear decline at the macroscopic level.
Alternatively, individual participants may follow different
nonlinear trajectories that sums up to seemingly linear curves

Figure 7. The rate of change in participants with low risk of Alzheimer’s disease.
From the ADNI sample, subgroups of participants with very low risk of Alzheimer’s
disease (AD) were selected based on 2-year clinical and neuropsychological stability
(n=18), levels of CSF Aβ1-42 (n= 28) or a combination of CSF Aβ1-42 levels and no
APOE ɛ4 alleles (n=22). The annual rate of change in the entorhinal cortex did not
differ statistically between any of the subgroups and the full ADNI sample. Thus, it is
very unlikely that thinning in this area in healthy older adults is solely caused by
undetected AD processes.
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at the group level. In all cases, nonlinear changes may be af-
fected by the added accumulated impact of various negative
events, for example, vascular factors (Raz et al. 2005).
Notably, the present results indicate that the brain changes,
even in the regions most prone to AD pathology, are not
necessarily caused by age-related neurodegenerative con-
ditions such as AD. Rather, atrophy in AD-vulnerable areas is
also a part of the normal aging process. Adding to the com-
plexity is the brain’s life-long ability to morphological change
in response to cognitive stimulation (Draganski et al. 2006;
Engvig et al. 2010). An important task for future research is to
identify specific environmental and genetic factors that impact
the rate of cortical thinning in individual participants. To ac-
complish that task, combined longitudinal and cross-sectional
studies with multiple examinations and large age spans are
needed (Raz et al. 2010), which will give us the possibility to
model the influence of different medical, genetic, and
environmental impacts on individual trajectories over time.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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