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Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically
acquiring several different types of MRI data and processing them along separate pipelines that provide
a set of complementary windows into each subject's brain. However, few attempts have been made to inte-
grate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes
multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components.
This paper examines the types of components found when running Linked ICA on a large magnetic resonance
imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects
ranging from 8 to 85 years of age. We find several strong global features related to age, sex, and intracranial
volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining com-
ponents describe spatially localized modes of variability in white or gray matter, with many components in-
cluding both tissue types. The multimodal components tend to be located in anatomically-related brain areas,
suggesting a morphological and possibly functional relationship. The local components show relationships
between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between
three different DTI measures. Further, we report components related to artifacts (e.g. scanner software
upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed
interpretable spatial patterns and were found to be reliable using split-half validation. This work provides
novel information about normal inter-subject variability in brain structure, and demonstrates the potential
of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach auto-
matically generates models to explain structure in the data, and may prove especially powerful for large-scale
studies, where the population variability can be explored in increased detail.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Genetic, environmental and lifestyle interactions are constantly
molding our brains in different ways, effectively shaping the
between-subject differences in behavioral and brain measures. In
line with the notion of multi-level and interacting modulating
factors on brain structure, functionally relevant differences in
clinical and normal populations are often hypothesized to be intrinsically
multimodal, including both gray and white matter measures (Zatorre et
al., 2012). Thus, magnetic resonance (MR) neuroimaging has become in-
creasingly multimodal in recent years, with many studies including mul-
tiple pulse sequences generating many different imaging contrasts from
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each subject. Functional, morphometric, and diffusion MRI data are typi-
cally analyzed through separate pipelines, and by jointly interpreting
the separate results together one can gain a more comprehensive under-
standing of the brain. However, this approach is limited because the mo-
dalities are only combined at the point of interpretation. There should be
benefits to fusing the data earlier, in particular after preprocessing but be-
fore statistical analysis, in order to model multi-modal covariances across
subjects and characterize the between-subject variability in a data-driven
way.

Exploratory methods that describe the variability across modalities
are useful for a number of reasons. Since the various modalities are
structural indices of the same subjects' brains, a high degree of common
variance is assumed across modalities, and efficient modeling of this
shared variance may increase sensitivity to behavioral, environmental,
age-related or genetic variability. Seeley et al. (2009) showed that
distinct patterns of neurodegeneration observed using voxel-based
morphometry (VBM) (Good et al., 2001) in a variety of diseases can
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also be reconstructed as patterns of VBM variability in a healthy control
population. This suggests that the structured patterns found in healthy
controls may also be relevant for decoding disease state. Multivariate
data-drivenmethodsmay also be able to find subtle structured artifacts
and automatically model these, effectively regressing confounds out
of the data, further increasing sensitivity to biological variance. Finally,
the components summarize the whole data set, reducing the di-
mensionality from many thousands of voxels (and their associated
covariances) to a manageable number of individually interpretable,
independent components.

Importantly, the forces driving the individual structural brain
differences may modulate both specific and general processes, effec-
tively influencing various levels or dimensions, e.g. through specific or
general influences on cortical gray or white brain matter, respectively.
Here, we attempt to study the patterns of inter-subject variability across
imagingmodalities using an exploratory tool for characterizing the sta-
tistical and, indirectly, the biological relationships between structural
brain imaging modalities, and for pinpointing the remaining artifactual
or morphological differences in these modalities. To this end we exam-
ine data from 484 subjects covering a wide age range (8–85 years).
T1-weighted structural and diffusion MRI data from these subjects
were analyzed using existing optimized modality-specific pipelines
to obtain spatial maps of cortical morphometric measures including
surface based measures of cortical thickness and cortical arealization
(Dale et al., 1999, 2000; Fischl and Dale, 2000; Fischl et al., 1999a),
voxel-basedmorphometry (VBM) based estimation of local graymatter
volume/density (Douaud et al., 2007), as well as three whitematter DTI
indices: fractional anisotropy (FA),meandiffusivity (MD) and themode
of the diffusion tensor (MO) (Ennis and Kindlmann, 2006).

These measures were fused using a Linked ICA model (Groves et
al., 2011) to obtain independent components of multimodal variabil-
ity. Linked ICA automatically balances the information content of dif-
ferent modalities, finding subject loadings that produce statistically
independent and non-Gaussian spatial maps across the modalities.
This enables the modalities with the strongest information relating
to each underlying feature to drive the subject-course of the compo-
nent. To aid interpretability and draw meaningful conclusions, we
correlate each component's subject-course with age, sex and intracra-
nial volume (ICV). Other useful information is also obtained, such as
the contribution of each modality to determining the component.

Sample and methods

Sample

The sample comprising 484 right-handed healthy volunteers
covering the age range from 8 to 85 years old was drawn from the
first wave of two longitudinal research projects at the Center for the
Study of Human Cognition at the University of Oslo: Neurocognitive
Development (Østby et al., 2009; Tamnes et al., 2010) and Cognition
and Plasticity through the Life-Span (Fjell et al., 2008; Westlye et al.,
2009a). The study was approved by the Regional Ethical Committee
of Southern Norway (REK-Sør). The participants were recruited
through newspaper advertisements and selected from among stu-
dents and employees of the University of Oslo. We obtained written
informed consent from all participants ≥12 years and from parents
for participants b18 years of age. Oral informed consent was given
by participants b12 years of age.

All subjects were native Norwegian speakers and screened using a
standardized health interview prior to inclusion in the study. Subjects
with a history of self- or parent-reported neurological or psychiatric
conditions including clinically significant stroke, serious head injury,
untreated hypertension, diabetes, and use of psychoactive drugs
within the last two years were excluded. Further, participants
reporting worries concerning their cognitive status, including memo-
ry function, were excluded. In addition, all included individuals' MR
scans were examined by a neuroradiologist and deemed free of sig-
nificant anomalies, including brain tumors and significant vascular in-
sults (stroke). All subjects above 20 years of age scored b16 on Beck
Depression Inventory (Beck and Steer, 1987) and subjects above
40 years of age ≥26 on Mini Mental State Examination (Folstein
et al., 1975). General cognitive abilities were assessed by Wechsler
Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999). Mean IQ
for the sample was 112.9 (SD=10.2, range=82–145).

Data acquisition and preparation

Imaging was performed using a 12-channel head coil on a 1.5-T
Siemens Avanto scanner (Siemens Medical Solutions, Erlangen,
Germany) at Oslo University Hospital, Rikshospitalet, with no hard-
ware upgrades and only minor software upgrades performed during
the course of the acquisition period (2006–2010).

The pulse sequence used for T1-weighted structural imaging was
magnetization prepared rapid gradient echo (MP-RAGE), with the
following parameters: TR/TE/time to inversion (TI)/flip angle (FA)=
2400 ms/3.61 ms/1000 ms/8°, matrix 192×192, field of view=240,
voxel size=1.25×1.25×1.20 mm, and 160 sagittal slices. Scanning
time was 7 min 42 s. Two runs were averaged during data processing
to increase signal-to-noise-ratio (SNR).

For diffusion weighted imaging a single-shot twice-refocused
spin-echo echo planar imaging pulse sequence with the following pa-
rameters was used: repetition time (TR)/echo time (TE)=8200 ms/
82 ms, b-value=700 s/mm2, voxel size=2.0×2.0×2.0 mm, and 64
axial slices. The sequence was repeated in 2 successive runs with
10 images acquired with a b-value of 0, and 30 diffusion weighted
images collected per run. Acquisition time was 11 min 21 s. This se-
quence is optimized to minimize eddy current‐induced distortions
(Reese et al., 2003). The two acquisitions were averaged during
data processing to increase SNR. The protocol also included a 176
slices sagittal 3D T2-weighted turbo spin-echo sequence (TR/TE=
3390/388 ms), and a 25 slices coronal T2-FLAIR sequence (TR/TE=
7000–9000/109 ms) used for clinical assessment.

Optimized modality-specific preprocessing pipelines were used
to produce standard-space subject images for each modality. Note
that the alignment across subjects within each modality is essential,
but there is no need for alignment acrossmodalities; indeed, different
resolutions and masks can be used, and voxel- and surface-based mo-
dalities are combined freely. Fig. 1 gives an overview of the pipelines
used, to extract six maps of interest from the two scan types.

Preparation of DTI data using TBSS

Processing of DTI data was performed using the FMRIB Software
Library, FSL (Smith et al., 2004; Woolrich et al., 2009). Each volume
was affine registered to the first b0 volume using FMRIB's linear
image registration tool FLIRT (Jenkinson et al., 2002) to correct formo-
tion between images and eddy currents. After removal of non-brain
tissue (Smith, 2002), FA, eigenvector, and eigenvalue maps were
computed by linearly fitting a diffusion tensor to the data.

In addition to FA andMD, we include tensor mode (MO) because it
is mathematically (though not biologically) orthogonal to FA and MD
and allows separating planar from linear diffusion tensors (Ennis and
Kindlmann, 2006). MO is particularly sensitive to subtle differences
in regions with crossing fibers (Douaud et al., 2011). MD was defined
as the mean of the eigenvalues.

FA volumes were skeletonized and transformed into common
space (Smith et al., 2006, 2007). All volumes were warped to the
FMRIB58_FA template using local deformation procedures performed
by FMRIB's nonlinear image registration tool (FNIRT) (Andersson et
al., 2007a,b). Excellent native-to-standard warping across individuals
in a partly overlapping life-span sample was previously demonstrated
(Westlye et al., 2010b). A mean FA volume of all individuals was



Fig. 1. A summary of the preprocessing pipelines, linked ICA, and post-processing steps used in this paper. The inputs are processed using standard TBSS, VBM, and FreeSurfer pipe-
lines, then after Linked ICA analysis the resulting component spatial maps are rendered while the component subject-courses are correlated with various subject variables.
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thinned to create a mean FA skeleton representing the centers of
all tracts. We thresholded and binarized the mean skeleton at FA
exceeding 0.2 to minimize partial voluming at the boundaries be-
tween tissue classes, yielding a skeleton of 127,562 voxels. Individual
FA values were warped onto this mean skeleton by searching perpen-
dicularly from the skeleton for maximum FA, further minimizing
partial voluming. The same warping was applied to the MD and MO
data, yielding skeletons sampled from voxels with FA exceeding 0.2.

Preparation of structural data using surface-based and volumetric
approaches

Vertex-wise cortical thickness and “arealization” measures across
the brain surface were estimated using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/) by means of an automated surface recon-
struction scheme (Dale et al., 1999; Fischl and Dale, 2000; Fischl
et al., 1999a, 1999b, 2001, 2002, 2004).

Cortical thickness measurements were obtained by reconstructing
representations of the gray/white boundary and the pial surface
(Dale and Sereno, 1993; Dale et al., 1999) and then by calculating
the distance between the surfaces at each vertex across the cortical
mantle. Surface area was estimated by registering each subject's
reconstructed surfaces to a common template (using folding informa-
tion to drive the within-surface warping), and the relative amount of
expansion or compression at each vertex was used as a proxy for re-
gional arealization. This area measure is not normalized for head size.
Surface maps were resampled, mapped to a common coordinate sys-
tem using a non-rigid high-dimensional spherical averaging method
to align cortical folding patterns (Fischl et al., 1999a, 1999b, 2008),
and smoothed with a Gaussian kernel with a full width of half maxi-
mum of 10 mm.

T1-weighted data was also processed using FSL-VBM (Douaud
et al., 2007), a VBM-based analysis (Ashburner and Friston, 2000;
Good et al., 2001). The registered gray matter partial volume maps
were modulated by dividing by the Jacobian of the warp field to
correct for local expansion or contraction. The modulated segmented
images were then smoothed with an isotropic Gaussian kernel with a
sigma of 4 mm (FWHM=9.4 mm).

Downsampling

For computational reasons, we reduced the number of data points
in each modality. Since the FSL-VBM preprocessing already included a
significant amount of smoothing (FWHM=9.4 mm), downsampling
from 2 mm to 4 mm isotropic causes minimal loss of information
(with the trilinear interpolation increasing the effective smoothing
to FWHM=9.8 mm). However, it does make the images less clearly
interpretable, so after running Linked ICA on the downsampled data
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we then re-fit the final decomposition using the full-resolution data.
The images shown in this paper are in the original, high-resolution
space; the low-resolution versions are qualitatively identical.

We reduced the TBSS skeleton resolution to 2 mm isotropic, with
the data projected from the 1 mm skeleton (127,350 voxels) onto
a 2 mm skeleton (11,860 voxels) obtained by downsampling and
renormalizing the 1 mmskeleton; this reduced the data dimensionality
while ensuring that the same tracts were included in both resolutions
of data. This also demonstrates that existing optimized pipelines can
be used, without having to re-run analyses at a lower resolution just
for linked ICA. FreeSurfer data was sampled from subject space directly
to the high-resolution fsaverage surface (163,842 cortical vertices
per hemisphere) and then to the low-resolution fsaverage5 template
(10,242 vertices); both were then smoothed with a surface FWHM
of 10 mm.

Linked ICA

Linked ICA is a data-driven approach for fusion of several imaging
modalities. Its main goal is to model the group data as a set of
interpretable features (ICA components), each one characterizing a
single, biophysically plausible form of variability. As shown in the
right half of Fig. 1, each feature consists of a shared subject loading,
which indicates which subjects have more or less of this feature,
and the corresponding spatial pattern that is learned for each modal-
ity. It also adaptively allows a given feature to be completely absent
from some modalities; this is especially useful for detecting artifacts,
which are generally restricted to a single processing pipeline.

Linked ICA is implemented as described in detail in our earlier
paper (Groves et al., 2011) with someminor improvements described
in the following subsections. In this work we use the “flat” (as
opposed to tensor) model configuration which means that while it
assumes spatial alignment within each modality across subjects,
there are no assumptions made about the spatial alignment between
modalities. The lack of any assumptions about spatial alignment be-
tween modalities means that when we find changes that are spatially
close to one another in different modalities, we can be confident that
this is solely due to changes co-occurring in the same subjects across
the different modalities, i.e. they are linked only by the shared subject
loadings.

Correction for spatial smoothness

Linked ICA explicitly takes into account the spatial correlation of
each modality, which helps ensure the correct balancing of informa-
tion across modalities. In principle, this means that (for example)
upsampling the data to a higher resolution (without changing its
spatial frequency spectrum) does not add any additional weight to
that modality. The effective number of independent measures was re-
duced using a data-driven degrees-of-freedom (DOF)/voxel estimate
to perform what is known as “virtual decimation”; this is a necessary
correction for spatial smoothness as the model would otherwise
assume spatially-independent white noise. In our previous work we
estimated this spatial smoothness using the RESEL estimates by
Worsley et al. (1995). We now use a more flexible method based on
the steepness of the eigenspectrum (Beckmann and Smith, 2004;
Johnstone, 2001); the flatter the eigenspectrum, the more excess
DOF there are in the data (i.e. spatial DOF >>#subjects). This is for-
malized by fitting the distribution of eigenvalues in the (null) multi-
variate normal.

This approach has several advantages over our previous method.
Since we are attempting to estimate the noise smoothness, it is
important to ignore the signal in the data which may be much
smoother than the noise; our model assumes that these signals
are low-rank, so they are concentrated in a small number of large
eigenvalues. Similarly, preprocessing steps such as de-meaning can
reduce the rank of the data, producing zero eigenvalues. As the null
eigenspectrum only has two parameters (noise amplitude and spatial
degrees-of-freedom), only two points on the eigenspectrum plot are
needed for a fit; we use the 25th and 75th percentiles of the eigenvalues
for this fit. As shown in Fig. 2a, this avoids these signals and preprocessing
artifacts and focuses on the central part of the eigenspectrum that will be
dominated by the noise floor. A secondary benefit is that this workswith-
out requiring information about spatial adjacency of measurements,
which simplifies working with surface data (or potentially non-spatial
data).

Dimensionality selection

We ran the linked ICA decomposition at two dimensionalities, L=
50 and L=100. Based on previous experience, we have found that
this data is rich enough to estimate at least 50 components robustly,
and the upper limit of L=100 was selected due to computational
limitations; increasing dimensionality much beyond this slowed
down the computation considerably and expanded memory usage
beyond an acceptable level. Ultimately the “optimal” dimensionality
depends on the quality of the data and the detail desired from the
decomposition. Linked ICA is capable of eliminating unneeded com-
ponents (using Bayesian model order selection), but in all cases it
kept all components. Unless stated otherwise, the results in this
paper are from the 100-dimensional Linked ICA decomposition; the
50-dimensional run is only used in the evaluation of component
robustness.

Subject-wise noise estimation and missing data

A common problem in ICA decompositions is that a significant
fraction of the ICA components will be dedicated to explaining
single-subject oddities or artifacts. We reduce the impact of this by
estimating the noise on a subject-by-subject basis within each mo-
dality; thus a single outlier scan that is poorly explained by the
current components will be automatically inferred to have more
additive noise, and thus less weight in determining the updates for
these components. This is conceptually similar to the approach used
in FSL's approach to group linear regression (Woolrich et al., 2004).
This almost completely solves the problem of single-subject compo-
nents, although outlier patterns that are consistent across several
subjects may still be assigned a component (as will be shown in
the results section). This same mechanism makes it trivial to deal
with missing scans, by simply fixing the noise precision to zero,
thus giving the missing data no weight in the ICA decomposition.

Post-hoc analysis and visualization

Each of the linked ICA components is defined by a subject-course
(a vector of subject weights, one scalar value per subject), as well as
each modality's corresponding spatial pattern.

As a final step, the subject-courses were fit back into the original
high-resolution datasets without changing the same subject-courses
or mixture models (spatial map histograms). The subject means
were also reintroduced back into the appropriate components. This
is conceptually similar to regressing the subject-courses back into
the original data, as is done as a final step in standard probabilistic
ICA (PICA) such as MELODIC (Beckmann and Smith, 2004; Johnstone,
2001).

The spatial patterns were converted to pseudo-Z-statistics by ac-
counting for the scaling of the variables and the SNR in that modality,
and are thresholded at z=3 for visualization. Note that the model
used by Linked ICA (and Bayesian ICA in general) is quite different
from the mixture modeling approach used by PICA. The main reason
for this is that Bayesian ICA uses an explicit spherical noise model
during the decomposition. We therefore use this inferred noise level



Fig. 2. (a) An example of the eigenspectrum-based DOF estimation, which corrects for spatial smoothness in the raw data — in this case, the tensor-mode (MO) modality. (b–d)
Show summary information for the components found by Linked ICA: (b) Shows the total variance explained by each component. (c) The relative contributions of the six white
and gray matter modalities to each of the 100 components. The diamond separates white matter (left side) from gray matter modalities (right side). Note how most components
have a significant contribution from both GM and WM modalities. (d) Shows that the largest-variance components tend to be most Gaussian (lower kurtosis), while the
low-variance components have the sparsest spatial maps (high kurtosis).
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to determine Z-statistics rather than fitting it post-hoc from the spa-
tial map histograms.

The components are sorted in terms of total explained variance
(scaled by the noise in each modality). The sign of the components is
arbitrary (in the sense that for a given component the subject-course
and all spatial maps can be inverted in sign to give the same fit to
the data).

The subject-courses were correlated (and plotted) against age,
sex, and ICV (Buckner et al., 2004). By “significantly correlated” in
this paper, we mean that a significant (pb .05) amount of the variance
of the subject-course is explained by regressing against a particular
subject variable. This is multiple-comparison corrected for the number
of components (100) and also for the two tails. We did not initially
correct for the number of subject variables evaluated, but all signifi-
cant correlations reported in this paper also survived this further
correction.

Age is a special case because we expect strong non-linear changes
with age, so we fit the age curves using a nonparametric smoothing
spline method with automatically-selected smoothing parameter,
which Fjell et al. (2010) have shown avoids some of the biases of
the more traditional polynomial fits. Furthermore, in components
where the subject loading changes relatively monotonically with
age, the dependent and independent variables can be flipped and
the relationship can be used to predict subject age, given the loading.
These fitting accuracies will also be reported.
Splitting component information by modality

In each iteration of Linked ICA, the shared subject-courses are
updated by combining information from all modalities, averaged
together using weights that reflect each modality's confidence in
its estimates. These precision contributions appear naturally in the
Variational Bayes updates for the shared subject loadings, and are
an important summary measure for understanding which modalities
are strongly driving a component, and which modalities are simply
detecting weaker traces of the same signal. The precision contribution
depends directly on the strength of the component in that modality
as well as the modality's noise levels and spatial-smoothness.

It is possible to separate the contributions from the six modalities,
yielding six slightly different estimates of the particular subject-course.
This is useful for assessing which modalities are driving the significant
correlation between a component's subject-course and a particular sub-
ject variable.

image of Fig.�2
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Assessing reliability of components

The reliability of the decomposition is assessed in several ways.
We first examine the consistency of the components found by the
two different dimensionalities, L=50 and L=100; ideally many of
the components will be very similar, with L=100 showing additional
components and sometimes splitting of the L=50 components into
finer subdivisions. We also examined the sensitivity to initialization,
by initializing the method using PCA or random vectors.

We also examine split-half reliability of the decompositions. Reli-
ability scores are calculated by split-half resampling of the data
(Groppe et al., 2009). We split the data set into two independent
sets of subjects, and the Linked ICA inference is performed separately
for each set; no data are shared. After this, the set of components from
each split is “greedily” paired (i.e. taking highest-correlated match
first) to the set of full-data components, by using the overlapping
parts of the subject-courses. This produces triplets of components
(half1, full, half2). The reliability is then assessed per-modality by
looking at the correlation of the spatial maps in that modality,
between half1 and half2 (the spatial map of the full data set is not
used for scoring). Significance is assessed by comparing these spatial
map correlations to the null distribution of correlations between all
other possible pairs of half1 and half2 components (i.e. those that are
not part of the same triplet). This null distribution corresponds to the
situation where the decomposition method does not detect any consis-
tent structure in the data. For comparison, we also evaluate the repro-
ducibility of components found by a simple spatially-concatenated
PCA on the same data set.

Results

Fig. 2b depicts the relative amount of the total variance explained by
each component, sorted in a descending order for the 100-dimensional
decomposition. This shows a relatively clear elbow at around compo-
nent #10, possible signifying a shift in the qualitative features of the
components between the first 10 and the last 90 components (see the
Global components subsection below).

Fig. 2c shows the relative modality loadings in each component; it
is clear that while no one modality was dominant overall, many of the
components were modality-specific (one modality strongly domi-
nates). Several components were dominated entirely by VBM, others
by DTI, in particular MD. These represent types of inter-subject vari-
ability that are only present in one modality or one group of related
modalities. However, a significant fraction of components show a
relatively equal balance between DTI and morphometric modalities,
indicating patterns of variability that were observable in both diffu-
sion and structural scans. The general GM–WM split was made visible
by the diamond symbol in each row, which separates the WM signal
(to the left of the diamond) from the GM signal (to the right).

Neuroanatomical results

Global components
Linked ICA picks out a number of high-variance “global” compo-

nents that have fairly Gaussian spatial maps and coexist with the
remaining “local” components, despite having a significant overlap
with them (Fig. 2d). We identified several of these global components
as having a very high correlation with age. The two strongest exam-
ples are shown in Figs. 3a and b.

Fig. 3a (component #0) describes a set of inter-subject differences
covering all modalities, and shows a strong correlation with age,
indicating that this component describes age-related differences.
Using the spline-fitting approach and leave-one-out cross-validation,
the subject courses from this component “predicted” subject age
with a standard deviation of 5.9 years overall (r=0.97), improving
to 2.4 years in the 8–16 year old subjects. We did not attempt to
predict age from the other components as the subject-courses do not
show a monotonic change with age.

The slope is significantly (z=−11, pb10−27) steeper in the devel-
opmental (8–25 years) compared to later phases (>25 years), indi-
cating that the changes occur more quickly in the young subjects.

With some notable regional exceptions, as age increases MD is
primarily decreasing along with decreasing FA. An opposite pattern
is observed in areas around the brain stem and thalamus for FA,
and parts of the genu and the external capsule for MD. MO shows a
heterogeneous pattern of decreases in frontal areas including the
forceps minor and increases in regions including parts of parietal
lobe. The GM measures are in general consistent with concurrent
reductions in volume (VBM), thickness and area from the earliest
age sampled.

Fig. 3b (component #4) shows a different age-related pattern,
closer to a U-shaped trajectory. In this case the subject-course is
strongly non-linear, with nearly no change up to age 50–60 and then
changing at an increasing rate. The largest observed changes are the
widespread increased MD, especially in major tracts such as the corpus
callosum. FA and MO are generally seen to be decreasing, especially
in peripheral tracts. Interestingly, one bilateral region encompassing
the superior longitudinal fasciculi shows the opposite effect, with FA
and MO both increasing.

We also observed graymatter involvement in this component, pri-
marily in terms of reduced gray matter volume as measured by VBM.
The reduction appears to focus on subcortical structures, including
the putamen, amygdala, caudate, accumbens and thalamus. Parts of
the cerebellum also show volume reductions, as does the medial
occipital cortex.

Fig. 3c (component #1) shows fairly global increases in MD along
with global reductions in FA. It has a similar U-shaped age profile to
#4 but appears to be “noisier”, suggesting that there are other factors
driving these global whitematter changes that are not as clearly related
to age. There are no gray-matter changes in this component. It is also
interesting to note that although components #1 and #4 have very
similar U-shaped age-profiles (fits are correlated with r=0.96), the
subject loadings have a much lower correlation (r=0.24) that is no
longer significant when the age fit is regressed out (r=−0.08). This
implies that the age-related changes described by these two compo-
nents have very different patterns of inter-subject variability.

Fig. 4 shows two additional strong multimodal age components.
Component #3 showed a very strong correlation with ICV (r=0.88,
z=26.5). Since ICV and sex are highly correlated, this component
also has a strong correlation with sex (r=0.63, z=15.6); and indeed
both regressors are still significant in a multiple regression, but ICV is
clearly the dominant effect (ICV z=22.3, sex z=5.9). The spatial
maps show strong global increases in surface area corresponding
with a globally increased ICV, as well as some scattered changes in
cortical thickness. There are also some weak diffusion differences as-
sociated with this component, which appear to focus mainly on the
periphery of the skeleton, suggestive of predominantly partial volume
effects. There is minimal VBM involvement in this component, but it
is worth noting that this measure would only be sensitive to relative
gray matter volume changes, as the global scaling of each brain is
absorbed by the initial affine registration and not included in the
VBM measure.

Fig. 4b shows component #17, which is primarily related to sex
differences (r=0.28, z=6.2), which becomes stronger once ICV is
regressed out (r=0.37, z=8.5), suggesting that this component ex-
plains sex differences over and above ICV. In a multiple regression,
both are significant (sex z=8.5, ICV z=5.8). This component corre-
sponds to a pattern of specific increases in cortical thickness in the
cingulate along with reduced gray matter volume in parietal regions
and higher MD in peripheral white matter in males compared to
females. Notably, this component has a U-shaped age profile, with
the sex differences strongest in the middle age range.



Fig. 3. Three of the strongest components show age-related effects. (a) Component #0 pulls out a multimodal set of brain differences that is dominated by cortical thinning and
VBM decreases, along with a strong pattern of changes in FA, MD, and MO. This component is very highly correlated with age (r=0.95), and has steeper increases in
development. (b) Component #4 has a U-shaped age profile that especially emphasizes differences related to aging, with patterns of white matter change and localized GM
decreases. (c) Component #1 shows a similar age profile, with widespread MD increases and FA decreases in old age.
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Assessing the contributions of each modality to global components
Although Linked ICA is built on the assumption that a shared

subject-course can describe a component across several modalities,
it is also possible to calculate the individual contributions of each mo-
dality to the subject-course (see Appendix A). Conceptually, this pro-
vides an estimate of how well the estimated subject-course would
match the external variable if only one of the modalities was avail-
able. This shows us whether the modalities that dominate the compo-
nent (by having large “precision contributions” in the VB updates) are
actually those that are most directly related to the relevant subject
variable (e.g. age). Fig. 5 shows a few examples of this. The right
bars are the correlation between the subject-courses and a nonlinear
spline fit of age (or ICV) to these subject-courses. Alternatively, a
regular correlation can be used, which assumes a linear relationship
between subject-course and age. This provides very similar results.
The bars on the left (component weights) relate to the signal-to-noise
ratio that shows the overall strength of that component's spatial map
in each modality, while the right bars relate to the contrast-to-noise
ratio of the subject variable of interest.

In Fig. 5a, we see that cortical thickness (CT) and gray matter
volume (GM) dominate component #0. However, each other modali-
ty, taken alone, is still able to predict age with high accuracy (r>0.93).
The combined subject-course (represented by the “all” bar) is closer to
the true age than any individual modality.

In Fig. 5b, we see that the gray matter pattern in component #4
is slightly more informative about subject age than either FA or MO,
despite having a much lower weight in the decomposition.

Fig. 5c shows component #1, which is dominated by FA and MD.
In fact, including the other modalities makes the age prediction
worse. Fig. 5d shows the relationship between component #3 and
ICV; in this case arealization (CA) is dominant, but including the
other modalities does improve the prediction slightly.
Structured noise components

Fig. 6a shows component #6, which is related to scanner software
upgrades partway through the data collection (i.e. Siemens software
Syngo v. 13, 15 and 17). The asymmetrical pattern is strongest in
MD and more weakly present in FA and MO. Fig. 6b shows a similar
artifact in component #2 which is also related to scanner version.

Fig. 6c depicts component #14, which shows apparent WM differ-
ences around the lateral ventricles. The corresponding age profile
shows that the subject loading is strong only in a small number of
elderly subjects. These subjects have large ventricles, and so this com-
ponent could partly reflect misregistration of these areas due to these
subjects' WM tracts being too far removed from the TBSS template, or
alternatively subtle periventricular vascular insults.

Component #52, in Fig. 6d, also only affects a small number of old
subjects, but an entirely different subset. In addition to DTI differences
these also show deep gray matter volume differences in the caudate
and part of the putamen, along with nearby WM changes. A closer ex-
amination of the T1-weighted volumes of these few subjects suggested
noticeable signal alterations in the areas of gray and white matter
changes, and this component isolates the effects of these.

Localized related changes in gray and white matter

Fig. 7 shows a few of the substantial number of components
describing anatomically-related, spatially focal GM–WM differences.
These mostly indicate relationships between thickness and volume
and the integrity (FA and MO) of the corresponding WM pathway.
None of these components correlated significantly with age, sex or
ICV.

Fig. 7a (component #11) shows a correlated pattern of FA and MO
in the posterior part of the forceps major and likely the optical
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Fig. 4. Global components that are related to intracranial volume (ICV) and gender. (a) Component #3 is very strongly associated with ICV. (b) Component #17 is highly correlated
with sex, especially after ICV is included as a confound regressor. This component also changes with age.
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radiation. This would normally be associated with higher general
integrity of this tract, although the associated higher MD suggests
this may be more complex. Alongside this tract there is lower surface
area in the medial visual cortex, with the more anterior part showing
higher cortical thickness and the posterior part showing lower GM
volume (VBM).

Fig. 7b (component #38) also shows higher FA and MO in bilateral
tracts comprising the visual pathways feeding into the occipital
cortices. This WM pattern is associated with lower gray matter
volume in medial and lateral occipital areas, as well as slightly in-
creased volume in a visual area that appears to lie at the terminus
of the involved white matter pathways.

Figs. 7c–d depicts two other components of GM–WM differences in
the cingulate sulcus. Unlike previous components, these are fully
lateralized; component #42 is almost entirely in the left hemisphere
while #48 is almost a mirror-image of it. Large increases in cortical
area are adjacent to large decreases, with VBM and thickness following
a similar pattern. The FA and MO changes are immediately adjacent to
this, showing a spatially very similar pattern of increases and decreases.
Relationship between the DTI indices

Fig. 8 shows a number of components describing modes of varia-
tion primarily in the white matter; in some cases there are also
weak GM thickness/volume differences in the same areas (not
shown). The components in Fig. 8 involve major fiber pathways and
come in two distinct flavors: FA+MD in the largest white matter
tracts and FA+MO in smaller tracts. In all cases these effects appear
bilaterally in local regions of the TBSS skeleton.

Figs. 8a–c show three components that isolate the posterior
corpus callosum, anterior corpus callosum and forceps major, respec-
tively. These show large increases in MD along with reductions in FA,
which is a pattern generally consistent with integrity of major tracts
with minimal crossing fibers (Douaud et al., 2011). There is very little
involvement of MO, possibly because this measure is less sensitive
than MD and FA when there is no clear secondary diffusion direction.

Several examples of components with combined FA and MO
changes in the smaller tracts are shown in Figs. 8d–g. In these compo-
nents there is no significant MD involvement, but spatially overlapping
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Fig. 5. It is possible to split contributions of each modality to a component. (a) Component #0 and (b) component #4 both predict age most accurately when all modalities are used.
(c) Component #1 is driven by MD and FA, but FA is actually better than the combined fit; this suggests that the MD pattern is responding to something other than just age-related
differences. (d) Component #3 predicts ICV most accurately when all modalities are used, even though cortical-area is by far the most heavily weighted.
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increases in FA and MO. These appear to be showing change in the
integrity of the larger fiber tract, while a smaller crossing tract is
unaffected. The relative strength of these modalities varies somewhat
between components, and even in different regions of the same compo-
nent. None of these components correlate significantly with age, sex,
or ICV.

Methodological results

Sensitivity to initialization
We re-ran the linked-ICA decomposition using a different initiali-

zation for the subject-courses, H; instead of a PCA decomposition
on the smoothness-weighted, concatenated data we used Gaussian
random noise and initialized the spatial maps by multiple-regression
of these random subject-courses into the data.

The subject-courses resulting from each Linked ICA run were
greedily paired between both runs and the absolute correlations
are plotted in blue in Fig. 9a. The concatenated spatial maps were
similarly paired, and these correlations are shown as the green line.
The plot shows that the inferred components are nearly identical
under each approach, with the median component pair having
subject-courses that are r=0.98 correlated and spatial maps that
are r=0.95 correlated.

We repeated this procedure, but instead of initializing with
random subject-courses we initialized using covariance-matched
Gaussian noise, where N(0,1) noise has been post-multiplied by
the matrix square root of the cross-subject covariance matrix.
These results are very similar, and are shown with dashed lines in
Fig. 9a.

Comparison of two different dimensionalities
Fig. 9b shows how well the components found by a lower-

dimensionality decomposition (L=50) have matching counterparts
in the L=100 decomposition that was used for our main results.
This shows that most components are quite stable across this large
increase in dimensionality, with a median spatial and temporal corre-
lation over 0.7. This means that while some of the components split
when there are more dimensions available, others are very similar
and the new dimensions are filled with additional components that
would have otherwise been treated as noise.
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Fig. 6. Several artifactual components discovered by linked ICA. Modalities with no voxels above threshold have been omitted. (a–b) Asymmetrical patterns in the DTI modalities
(especially MD) that are related to scanner software upgrades. (c) A registration artifact related to expansion of the lateral ventricles in some very old subjects. (d) A set of changes
that are related to apparent subcortical and white matter calcification in several old subjects. The brain slices come from the highest-loaded subjects in components #14 and #52, to
illustrate these problems.
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Split-half reliability
Fig. 9c shows the split-half reliability of each component. Each

component in the full decomposition is greedily paired with one com-
ponent from each half-decomposition, using only subject-course cor-
relations. The spatial correlation between each half-decomposition's
spatial maps is used as a “reproducibility score”. For comparison,
the concatenated PCA produces much lower reproducibility score
for most of its components. This demonstrates that our ICA-based
Fig. 7. Four components showing related differences in gray matter and white matter. (a) sh
and volume in parts of medial V1/V2 — but also increased gray matter thickness in the sam
visual pathways feeding into the occipital cortices is associated with GM area and volume c
left and right cingulate, respectively.
approach is finding features that are more stable and reproducible
than simple variance.

We can determine how many of these pairings are significant by
building an empirical null distribution, based on the spatial correla-
tion between all unpaired half-decomposition components. Using
false discovery rate (FDR) thresholding (α=0.05), we find that 74
of the linked ICA components, but only 17 of the PCA components,
are significantly reproducible (Fig. 9d).
ows that increased FA and MO in the optic radiation is associated with reduced GM area
e area. (b) shows that increased FA and MO in a bilateral pair of tracts comprising the
hanges in the related intraparietal region. (c–d) show related GM–WM changes in the
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Fig. 8. DTI components showing related TBSS changes in FA, MD, and MO. (a–c) show three white matter components with overlapping, opposite-sign differences in MD and FA.
(d–g) show four white matter components with overlapping, same-sign FA and MO changes.
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Discussion

We have demonstrated that Linked ICA decomposes a large mul-
timodal data set into components that fall into a number of distinct
categories based on spatial pattern and the modalities that are
involved. Broadly, we have reported a relatively small number of
“global” components that match up well with age, sex, and ICV.
Many more “local” components were found reflecting spatially dis-
tinct, generally bilateral, and usually multimodal variability. Lastly,
several components reflecting structured noise or imaging and/or
analysis artifacts were found. We will discuss the various modes of
variability in more detail below.

Global components

The global components contain concentrated information about
individual subject variables and show very strong relationships with
age and ICV. These components have spatial histograms that are close
to Gaussian, and are driven more by variance than non-Gaussianity. It
is worth noting that this is quite unlike the behavior of standard proba-
bilistic ICA (Beckmann and Smith, 2004; Johnstone, 2001), which uses a
prewhitening stage to totally remove the influence of variance. Linked
ICA is instead based on a generative model of the original, unwhitened
data, which makes it more sensitive to large-variance signals and
therefore combines some PCA-like behavior with ICA-like behavior.
For this reason we suspect that these global components may change
in form if the composition of the population changes; the age-related
components we found may only be the most prominent ones because
these subjects are spread over a wide age range. There is a sharp
transition, with components 0–9 explaining large amounts of variance
and being spatially global, while 10–99 explain a relatively consistent
amount of variance each but are much more focal.
The subject courses of the largest component showed very high
sensitivity to age, and prediction analysis using smoothing splines
and leave-one-out cross-validation revealed high prediction accuracy
across the full age-span (r=.97), and even higher when analyzing
a cohort of the youngest sample. This prediction accuracy compares
favorably with previous work on predicting age using functional
network data (Dosenbach et al., 2010) and is comparable to previous
results using VBM alone (Franke et al., 2010). It is important to
remember that linked ICA is an unsupervised learning process
that found this component without any knowledge of the age of the
subjects, and that instead of regressing out confounds explicitly, this
approach automatically removes structured confounds by isolating
them in other components. We did not attempt to predict age
from the other components as the subject-courses do not show a
monotonic change with age. Bearing in mind that linked ICA is totally
naive to subject age, we find the high age sensitivity of some extracted
components encouraging and supportive of our assumption that the
multimodal decomposition extracts biologically meaningful informa-
tion. This is further supported by our finding that age prediction
accuracy was higher when using our multimodal component as com-
pared to using the same information from each of the modalities
individually.

Some of the components, when considered alone, appear to com-
plement results from simpler analysis methods; for example, the
age-related changes in component #0 suggest relatively linear effects
of age across the lifespan, but demonstrate novel complex spatial
patterns of both positive and negative associations with age. This
observation extends previous findings of age-related differences in
the DTI indices (Westlye et al., 2010b), and demonstrates the power
of the current method in detecting patterns of age-related brain
differences across subjects. Crucially, the spatial maps found by linked
ICA are effectively a multiple linear regression, where the data set
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Fig. 9. Assessments of reproducibility, based on pairing components across different decompositions. (a) Initialization using PCA vs. random initializations. (b) Comparison of two
model orders: L=50 and L=100. Many of the components are highly similar, with some changing due to e.g. splitting. (c) Split-half reliability results, showing the spatial corre-
lations between components paired using only subject-course information. (d) Using an empirical null distribution and false discovery rate (FDR) thresholding, we assess the sig-
nificance of these pairings.
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is explained by the combination of all components; so age-related
changes that appear absent in the main component could be better
explained in another component that is also correlated with age. For
example, the global cortical surface area is dominated by age-related
decreases (in #0) and ICV-related increases (in #3).

The patterns found in other global components are in general
agreement with previous regression-based studies in earlier analyses
of overlapping samples (Tamnes et al., 2010; Westlye et al., 2010b).
The main nonlinear age component (#4) agrees with the nonlinear
trends in gray matter volume found by Ziegler et al. (2011) and in a
multi-sample study (Walhovd et al., 2011). Similarly, Westlye et al.
(2010b) showed differences in white matter volume and DTI indices
that find similar quadratic age profiles with increasing FA and
decreasing MD until the 4th decade, followed by declining FA and
increasing MD, which is also supported by independent DTI studies
(Hasan et al., 2007, 2009; Imperati et al., 2011; Lebel et al., 2012).

The opposing white matter changes shown in component #4,
where FA and MO increases are associated with aging in some tracts,
are believed to be areas of crossing fibers, since increases in diffu-
sion anisotropy can be caused by the weaker tract degenerating
while the stronger tract is preserved. A very similar pattern of
increasing FA and MO was recently reported in degeneration related
to mild cognitive impairment and Alzheimer's disease, and further
corroborated by tractography analysis indicating that this specific
pattern may be explained by degeneration of the association path-
ways and a relative preservation of the motor pathways (Douaud
et al., 2011).

Structured noise components

We found several strong diffusion-only components that were
clearly related to imaging artifacts with consistent spatial patterns
across subjects. One of these was clearly related to a minor software
upgrade, but we did not find an explanation for the other compo-
nents. A significant benefit of an exploratory approach like ICA
is that this can find structured noise in the data by modeling the
spatial structure; this has long been used on FMRI and electroenceph-
alography (EEG) data. Isolating artifacts as specific components
prevents them from contaminating the remaining signals, and may
increase sensitivity to correlation against subject variables. Our ap-
proach is particularly powerful when artifact components are present
in several related modalities. For example, the diffusion artifacts are
strongest in MD, which makes it easy to detect and characterize the
artifacts and estimate their strength in each subject, so that they
can be removed from FA and MOmore cleanly that would be possible
otherwise.
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Local components

The local components that coexist with the global components are
driven by non‐Gaussianity and spatial sparsity in particular. We find
that nearly all of the non-artifact components involve all modalities
at some level, and some of them are very evenly balanced, showing
corresponding differences in gray and white matter. To what degree
these explain functionally-relevant variation in brain structure re-
mains an open question. The specificity of the local DTI components
(Fig. 8)may reflectmodes of variation directly or indirectlymodulated
by experience and use-dependent shaping of cortical and subcortical
networks (Zatorre et al., 2012). Future linking between the hierar-
chical organization of the components may substantially inform
systems-based approaches to cognitive and clinical neuroscience.
We are currently designing further analyses where we explicitly
aim to map the neurobehavioral and genetic associations onto the
multimodal components. We are also working on implementing
linked ICA on longitudinal datasets in order to delineate the individual
age-trajectories in more detail.

White matter components

In white matter, FA appears prominently in all local components of
variation. However, for large tracts, FA and MD show predominantly
negative correlations while MO is unchanged; and for smaller tracts,
FA and MO show positive correlations as MD remains constant.
The strong involvement of FA supports that FA is a sensitive general
imaging marker for WM differences, but it is important to note that
in some components the MO or MD differences were more significant
than FA. It also suggests that a linear combination of these measures
could be more sensitive for detecting certain changes than any single
measure alone. Indeed, a variety of measures are used in the literature
to gain sensitivity, such as the first eigenvalue of the diffusion tensor
(L1) and radial diffusivity (RD). In the present study, we only included
FA, MD and MO because these measures are mathematically orthogo-
nal and should have independent noise from one another.

Similar to the focal GM components, the components dominated
by DTI were also characterized by bilateral and anatomically and func-
tionally related regions, including longitudinal (e.g. #56, reflecting
parts of the superior longitudinal fasciculus) and commissural
(e.g. #24, reflecting anterior parts of the corpus callosum) pathways.
Some of these components are quite similar to those found by Li et
al. (2011) using FastICA on FA alone. Our results shed further light
on the meaning of these components by incorporating MD and MO
in our model, which allows all three measures to drive the decompo-
sition. The correlated pattern of differences in FA andMD/MO, respec-
tively, is likely to be biologically informative. Increased FA along with
decreased MD (e.g. #13, #19 and #24) may reflect biological variabil-
ity related to the integrity of pathways with minimal crossing fibers,
with very little involvement ofMO, likely because there is no clear sec-
ondary diffusion direction andMO is saturated. Other DTI components
(e.g. #49, #55, #56, #57) show spatially overlapping increases in
FA and MO, but no MD involvement. This pattern may partly reflect
variations in degree of crossing fibers, in particular differences in
the integrity of the larger fiber tract, while a smaller crossing tract is
unaffected. The strength of the modalities varies from component to
component, and even in different regions of the same component,
likely partly reflecting regional differences in degree of crossing fibers.

The findings of distinct and reasonable spatial maps reflecting
regional cross-subject variability in WM microstructure inform the
debate regarding regionally general versus specific involvement
in modulating age- and behavioral intra-individual differences (Li
et al., 2011; Lövdén et al., 2012; Penke et al., 2010; Wahl et al.,
2010). The present decomposition supports a multidimensional
perspective of WM organization, but further studies are needed to
establish the true dimensionality and the hierarchical structure.
Multimodal involvement

Several components showed high loadings from both GM andWM
modalities. While this pattern indicates shared variance across tissue
types, we are not certain as to the underlying cause of these related
differences. Little is known about the relative impact of common
and specific modulators of gray and white brain tissue, respectively,
but it is fair to assume a relatively large degree of shared influence
across tissue classes, which could explain the various multi-modal
components. Relating these components to differences in behavioral,
environmental, and genetic measures is a promising avenue for future
studies. Using the subject-course-splitting approach from Fig. 5, it may
be possible to determine whether these effects are both directly due
to genetic effects, or whether the genes more strongly drive one par-
ticular modality, and the other modalities show secondary effects.

The positive VBM and FA correlations in component #38 (Fig. 7b)
appear in nearly the same location as the changes reported by Scholz
et al. (2009) when subjects practiced juggling for several weeks;
these were believed to be an area and tract related to visual motion
tracking. It is unclear whether the observed components in the
present analyses could be functional – for example, relating to
experience-dependent differences related to these areas – or whether
they are purely morphological. However, several components revealed
an intriguing pattern across modalities, which may point to functional
specificity.

We speculate that some of the cross-tissue components partly
reflect functionally-relevant differences in gray matter and its
corresponding white matter connections. One would generally expect
these to show differences in the tracts that are connected to the gray
matter rather than those that simply run past it, and the direction of
the association should usually show larger gray matter volumes,
thickness, and areas associated with improved white matter quality
(generally increased FA and MO, reduced MD). For example, the
multimodal spatial patterns of component #11 (Fig. 7a), showing de-
creased GM density and surface arealization and increased cortical
thickness in the primary visual cortices along with increased FA, MD
and MO in visual WM pathways, likely reflect structural differences
in the visual system. A speculative explanation could be that if
the primary visual cortices, including V1, cover smaller areas of the
cortex – which is reflected in the decreased surface arealization –

the white matter pathways feeding into it will appear “denser” and
more anisotropic if it contains the same number of axons in a thinner
tract. Furthermore, assuming that these smaller visual cortices con-
tain the same number of neurons, this could explain the increased
cortical thickness observed in this component. Although speculative,
such interpretations may provide a functional basis for hypothesis
generation in future studies. For example, individual differences
in the size of the primary visual cortices have recently been linked
to the subjective experience of object size and visual illusions
(Schwarzkopf et al., 2011), and further to the peak frequency of
visually induced oscillations in the gamma band as measured with
magnetoencephalography, which is assumed to reflect important
aspects of visual processing (Schwarzkopf et al., 2012). Our observa-
tions of correlated changes between the size of and cortical thickness
in the primary visual cortices, and the microstructure of the visual
pathways feeding into the cortex, may provide an extended mecha-
nistic explanation of the structural basis for individual differences in
visual processing and perception.

Alternatively, some of the multimodal components may be due
to morphological differences such as folding patterns, which could
have artifactual impact on GM measures and adjacent WM measures.
However, all of the modalities attempt to correct for gross morpho-
logical differences in their ownways, which should be relatively inde-
pendent from one another. In this case, adjacency would be the key
factor and the direction of the association would be less certain. We
emphasize that there is no constraint in the decomposition model
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to ensure spatial correspondence across modalities. In this “flat linked
ICA” configuration, themodel is unaware of any spatial correspondence
between modalities.

Reliability of the decomposition

We have shown that our approach yields components that are
mainly robust to population subsampling and to changes in initializa-
tion. The global components are highly reliable, and most of the local
components are also much more reliable than their PCA equivalents.
It should be possible to more rigorously assess which components
are individually significant, potentially using the null model derived
in Groppe et al. (2009). As we aim to describe classes of components
rather than attach interpretations to individual components, we leave
this for future work.

General comments on Linked ICA

As this multimodal analysis revealed several distinct categories
of components, e.g. global versus local, multimodal versus unimodal,
and GM-dominated versus WM-dominated, they are not generally
comparable to each other as modes of variation in the same way
that resting state networks (Beckmann et al., 2005) or FA components
(Li et al., 2011) are. The fact that many of the components are domi-
nated by one modality suggests that it might be better to analyze the
diffusion data separately from the morphometric data, and attempt to
pair or cluster the components afterwards. However, the significant
number of joint components suggests that there is value in a joint de-
composition. Furthermore, we have shown that the current format is
fully capable of isolating true single-modality components, such as ar-
tifactual differences in DTI. The decision to run a joint or separate
analysis will ultimately depend on what questions are being asked
of the data.

A theoretical benefit of linked ICA is the ability to perform automat-
ic dimensionality selection on the fly, during the component inference.
However in this paper we have used a restricted dimensionality; this
was partially for computational reasons, but also because we believe
that using a very high dimensionality can reduce interpretability
by splitting components, even if this splitting is justified by the data
(i.e. not overfitting to noise). Our previous work on FMRI has shown
that there may be no single “correct” dimensionality for an ICA decom-
position, but instead different dimensionalities will show features on
a different scale (Smith et al., 2009). In this work we have chosen a
dimensionality that we believe yields highly interpretable components
of multimodal inter-subject variability; a higher dimensionality may
give future studies more detail and allow them to answer more specific
questions.

In each linked ICA component, all modalities share exactly the
same subject loadings, and this is perhaps an overly-strong constraint.
However, it is not clear how this linkage can be weakened without
compromising interpretability. Regularization would be needed to
encourage the subject loadings to be similar, and thismust be carefully
balanced against the pressure to make each spatial map as indepen-
dent (and non-Gaussian) as possible. Furthermore, the resulting
components would have no consensus subject loading vector, which
introduces ambiguity into the post-hoc correlation analysis and
leads to the open question of how to interpret the differences between
these slightly different vectors. Our approach of using a hard linkage
between modalities is conceptually and methodologically cleaner,
at the expense of possibly requiring more components.

The variety in the types of components may be an indication
that the current model is too flexible and allows too much variance
to be absorbed by a small number of “global” components. This is
potentially a different behavior from standard FastICA, which removes
scale information (by prewhitening the data) before maximizing
non-Gaussianity. A model based explicitly on sparsity (Li et al.,
2010) could potentially provide a different set of components with
less of a global/local divide, while maintaining the flexibility of a
generative Bayesian framework. However, we leave any comparison
between standard FastICA and Bayesian ICA methods for future work.

The current approach uses no information about the spatial rela-
tionship between the modalities. This is so that the model does not
automatically induce spatially adjacent GM and WM patterns. How-
ever, potentially greater sensitivity could be obtained by also pooling
spatial information, but there are obvious technical and conceptual
difficulties in determining spatial correspondence between different
modalities including e.g. cortical surface maps and the TBSS skeleton.

On a general note, despite efforts to recruit healthy participants
only, including health interview, cognitive assessments and radiological
evaluation, we cannot completely rule out the influence of subclinical
conditions on the structural imaging measures. Further, we did not
exclude areas showing T2-weighted white matter hyperintensities
(WMHs). However, signal intensity alterations are regularly found in
healthy individuals, and may not represent a specific neuroradiological
marker of disease (Vernooij et al., 2007). Also, WMHs may manifest as
characteristic patterns across the included modalities, and may there-
fore be isolated in specific components. For example, component #52
(Fig. 6d) reflects structural variability in a subset of the oldest partici-
pants and is strongly associated with increased MD and decreased GM
density in areas including the caudate and putamen and associated
WM pathways. Thus, we think that the present method alleviates
some of the concerns related to inclusion of WMHs in the analysis.

Future avenues

Amajor future direction for development of this approach is tomake
Linked ICA work with a wider variety of modalities; e.g. surface based
measures of gyrification and curvature, subcortical volumes, WM
hyperintensities, signal intensity and contrast measures (Panizzon et
al., 2012; Salat et al., 2009; Westlye et al., 2010a, 2009b). In particular,
functional MRI could be incorporated in a number of ways, but must
be summarized using regression parameter estimates for task-based
data (Duff et al., 2012), or subject-specific RSN maps e.g. from dual
regression (Filippini et al., 2009) for resting-state data. Longitudinal
datasets also present a new direction, as there are many possibilities
for modeling the baseline and change over multiple timepoints. Linked
ICAmay also provide an elegant way of generating endophenotypes for
genetic association studies. Similarly, we plan to test whether these
components are sensitive to disease states in multimodal datasets.

Of the major global components we found, several were strongly
age-related. We believe this is likely because of the large age-span
of our sample and the relative homogeneity of the group in most
other respects. It would be interesting to test this on data sets with
other large sources of variability (e.g. disease groups) to determine
how much these components' spatial maps change as a result of a
change in the population, and how well the subjects can be classified
using the subject loading matrix as features. We also plan to investi-
gate the question of dimensionality estimation more closely, keeping
in mind that Bayesian model energy may not be ideal if the goal is to
maximize reproducibility, interpretability, or relevance to behavioral/
genetic variables.

In conclusion, Linked ICA provides an efficient and sensitive
data-driven approach for defining components of inter-subject vari-
ability in neuroimaging data across various modalities. We propose
that fusing variance across modalities may increase sensitivity to exter-
nal subject variables and will focus on some aspects of the remaining
components in other papers.
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Appendix A. Contributions to shared subject-series

Our earlier paper (Groves et al., 2011) gave the variational Bayes
full update equations needed to implement Linked ICA. Here we re-
produce the updates for the shared subject-series matrix and show
how it relates to the results shown in Fig. 5.

The VB approximate-posterior distribution q() of the components-
by-subjects matrix H is given by the multivariate normal distribution
on each column

q Hrð Þ ¼ N Hr ;Mr ;Vrð Þ

with the covariance and mean defined by

V−1
r ¼ Iþ ΣK

k¼1〈λ kð Þ
r 〉〈X kð ÞTX kð Þ〉∘〈W kð ÞTW kð Þ〉

MrV
−1
r ¼ ΣK

k¼1〈λ kð Þ
r 〉Y kð Þ

r
T〈X kð Þ〉∘〈W kð Þ〉

where k=1…K indexes the modalities, X(k) is a voxels-by-components
matrix of spatial maps, W(k) is a 1-by-components matrix that absorbs
the overall component scaling, Y(k) is the voxels-by-subjects data
matrix, and λ(k) is the noise precision of each subject. A subscript r
indicates that only the column of the matrix corresponding to subject
r is taken. Angle brackets indicate an expectation integrated over the
VB posterior distribution of the contained random variables.

These summations mean that the inferred H is given by a
precision-weighted combination of normal distributions from each
of these K modalities (and unit prior), i.e.

N Hr ;Mr ;Vrð Þ∝N Hr ;0; Ið Þ ΠK
k¼1N Hr ;Mpart kð Þ

r ;Vpart kð Þ
r

� �

with the covariance parts and mean parts defined by:

Vpart kð Þ
r

−1 ¼ 〈λ kð Þ
r 〉〈X kð ÞTX kð Þ〉∘〈W kð ÞTW kð Þ〉

Mpart kð Þ
r Vpart kð Þ

r
−1 ¼ 〈λ kð Þ

r 〉Y kð Þ
r

T〈X kð Þ〉∘〈W kð Þ〉:

Mpart(k) is gives modality k's contribution to the shared
subject-course, and the diagonal elements of (Vpart(k))−1 give the
precision contributions of modality k.
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