








significantly differ between survivors and controls (ie, ICV, cortical
GM, cerebral WM, amygdala, caudate, hippocampus, and thalamus).
A few other structures showed negative correlations with treatment
variables (accumbens area [rs � �.19; P � .028] and corpus callosum

[rs � �.18; P � .040] with radiation therapy; pallidum [rs � �.21;
P � .016] with total antracycline dose), whereas ventricle volumes
were positively correlated with radiation therapy (lateral ventricles
[rs � .20; P � .023]; third and fourth ventricles [rs � .21; P � .017]).
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Fig 2. Automated whole-brain segmentation. Different brain volumes are shown in different colors for representative childhood acute lymphoblastic leukemia survivor
in coronal views in radiologic convention. Corpus callosum and ventricles are not labeled in these slices.

Table 3. Neuroanatomic Volume in ALL Survivors and Controls

Structure

Controls (n � 130) ALL Survivors (n � 130) ANCOVA
Volume

Difference (%)Mean (�L) SD Mean (�L) SD F P Partial �2

Intracranial volume 1,642,919 165,256 1,599,426 148,801 8.084 .005 0.031 �2.6
Cortical GM 249,099 24,515 241,529 23,428 11.511 .001 0.043 �3.0
Cerebral WM 268,655 31,847 260,952 27,904 7.134 .008 0.027 �2.9
Cerebellar GM 56,793 5,901 57,077 6,181 0.288 .592 0.001 0.5
Cerebellar WM 14,420 1,544 14,495 1,705 0.106 .745 0.000 0.3
Accumbens 698 116 679 99 2.185 .141 0.008 �2.3
Amygdala 1,680 219 1,614 204 8.617 .004 0.033 �3.9
Brainstem 21,796 2,185 21,862 2,322 0.028 .866 0.000 0.3
Caudate� 3,758 444 3,563 446 14.325 < .001 0.053 �5.2
Corpus callosum 3,287 477 3,225 441 1.432 .233 0.006 �1.9
Hippocampus 4,380 396 4,255 418 7.362 .007 0.028 �2.9
Pallidum 1,726 182 1,705 181 1.066 .303 0.004 �1.2
Putamen 5,736 629 5,651 646 1.248 .265 0.005 �1.5
Thalamus 7,278 591 7,124 666 4.900 .028 0.019 �2.1
Lateral ventricle� 7,530 3,642 7,603 4,115 0.002 .966 0.000 1.0
Third and fourth ventricles� 2,646 608 2,710 705 0.469 .494 0.002 2.4

NOTE. Group differences were tested with ANCOVAs, with age and sex included as covariates. Bold font indicates significance (P � .05).
Abbreviations: ALL, acute lymphoblastic leukemia; ANCOVA, analysis of covariance; GM, gray matter; SD, standard deviation; WM, white matter.
�After log transformation because of non-normal distribution.
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When corrected for multiple comparisons (Bonferroni), none of these
correlations remained significant (Appendix Table A2, online only).

Neuroanatomic Volumes and Results

of Neuropsychological Testing

Spearman’s correlations, controlling for age and sex, were per-
formed between neurocognitive scores and those neuroanatomic vol-
umes shown to differ between ALL survivors and controls. In ALL
survivors, processing speed was correlated with cortical GM (rs � .18;
P� .048), caudate(rs � .18;P� .047), andthalamus(rs � .23;P� .012).
Executive function was correlated with ICV (rs � .20; P � .033), cortical
GM (rs � .22; P � .016), caudate (rs � .21; P � .020), and thalamus
(rs � .18; P � .047), but no correlations where seen for the executive
function measure residualized for processing speed. In all cases, better
performance was associated with larger volumes. None of these cor-
relations remained significant when corrected for multiple compari-
sons, and no correlations were demonstrated among controls.

DISCUSSION

The results of this cross-sectional study with the largest number of
participants to date indicate that a number of neuroanatomic
structures, including total cortical GM, total cerebral WM,
amygdala, caudate, hippocampus, and thalamus, are smaller in
adult survivors of childhood ALL compared with healthy controls.
Our findings of reduced ICV in ALL survivors indicate general
rather than regionally specific neurodevelopmental effects of ALL
treatment. Importantly, these volume differences, despite being
relatively small, were observable decades after therapy and in
mostly well-functioning individuals with estimated IQs not signif-
icantly different from the controls.

Our study confirmed the results from several previous studies
reporting smaller WM volumes in ALL survivors26-29 but also found
smaller cortical GM volumes in survivors. The largest study by Red-
dick et al,29 involving 112 child and adolescent survivors and 33

healthy siblings, documented WM volume loss, which was exacer-
bated in irradiated patients and associated with impaired neurocogni-
tive performance. Kesler et al28 found no difference in total brain
volume but significantly reduced global and regional WM volumes in
ALL survivors compared with controls. Another study reported
smaller frontal WM volumes in irradiated survivors, and diffusion
tensor imaging indicated reduced WM integrity in survivors, the effect
being most pronounced after combined treatment with irradiation
and chemotherapy.27 Finally, Carey et al26 described two specific re-
gions of reduced WM in the right frontal lobe in ALL survivors
compared with healthy controls.

In previous studies of survivors, there was little focus on subcor-
tical structures. It is known that the basal ganglia during childhood
have high metabolic demands and thus may be particularly vulnera-
ble.41 Porto et al27 reported reduced GM concentration within the
caudate and thalamus in irradiated survivors of childhood ALL. In
accordance with these results, we found smaller volumes of caudate
and thalamus in survivors compared with controls. The largest group
difference was found in the caudate, which was a specific effect, per-
sisting when correcting for ICV. The significance of this finding is
uncertain, because studies supporting a particular vulnerability of the
caudate to cancer therapy are lacking. The caudate, as part of the
striatum, is a part of the frontostriatal circuit supporting executive
functions,42 and caudate lesions have been shown to lead to impaired
planning and problem solving, attention, learning, memory, and ver-
bal fluency.43-45 Remarkably, several of these functions have also been
described as common neurocognitive late effects in survivors of child-
hood cancer.9 Additionally, we also found reduced volumes of hip-
pocampus and amygdala, which, however, did not persist when
corrected for ICV. The hippocampus is thought to play a crucial role in
postnatal neurogenesis, and hippocampal damage induced by irradi-
ation or chemotherapy has been proposed to play a role in neurocog-
nitive impairment among cancer survivors.46

Young age at diagnosis is a risk factor for neurocognitive sequelae
in patients undergoing CNS irradiation.6,47 An MRI study of children
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Fig 3. Mean differences in neuroanat-
omic volumes between acute lymphoblas-
tic leukemia (ALL) survivors (n � 130) and
controls (n � 130). Negative differences
indicate smaller volumes in ALL survivors
compared with controls. ICV, intracranial
volume; WM, white matter. (*) P � .001.
(†) P � .01. (‡) P � .05.
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before, during, and after therapy for ALL showed that those with WM
changes were significantly younger than those without changes.19 In
the present study, we found no association between age at diagnosis
and neuroanatomic volume. One reason may be that the effects of age
at diagnosis and therapy intensity counteract each other; the youngest
children carry the best prognosis and thus typically require less-inten-
sive therapy.

It has been shown that survivors of childhood ALL are at risk of
decreased adult height.48 Height is known to be associated with brain
volume.49 However, in our study, the height of survivors and controls
did not differ significantly, and the group differences in brain volumes
were not explained by height.

Our study failed to identify unique etiologic factors with a high
impact on neuroanatomic volume in ALL survivors. Reasons for this
could be the significant heterogeneity of the survivor group, the long
time span covered, and the long follow-up interval, which may have
given rise to unknown confounders unrelated to disease or treatment.
CNS irradiation is a major risk factor for neurocognitive late effects in
survivors of childhood ALL.3,47 Our results showed no major impact
of radiation therapy. However, the fraction of irradiated survivors was
small, and the radiation doses applied were relatively low. If we are
unable to identify a single drug or treatment variable as the main
causative agent, which alternative explanations may exist? More-
general factors such as generally reduced health during a prolonged
period resulting from malnutrition and recurrent infections, a state of
long-lasting stress,50 repeated general anesthesias,51 and effects result-
ing from deprivation52 might be considered. According to the
accelerated-aging hypothesis, cancer and cancer therapy may acceler-
ate the trajectory of cognitive dysfunction and GM decrease associated
with the process of aging.13 This may be of particular significance in
the long-term survivors included in our study.

ALL survivors in this sample had education levels similar to those
of the general population and had estimated IQs not significantly
different from those of controls—in fact, in the high average range.
Nevertheless, their processing speed, executive function, and verbal
learning/memory were inferior compared with controls, in accor-
dance with previous literature.6,53 Previous studies have reported an
association between WM integrity and cognition in childhood cancer
survivors.24,25,29 In our study, we found associations between reduced
volumes of cortical GM, caudate, thalamus, and ICV and impaired
neuropsychological performance in survivors. Similar findings were
reported recently in long-term survivors of childhood Hodgkin lym-
phoma, in whom attention deficits were related to reduced cortical
thicknesses.54 Thus, it is likely that the smaller neuroanatomic vol-
umes of the patients account for some of the specific cognitive reduc-

tions compared with the controls, even though they still function
within the normal range.

This study is limited by its cross-sectional design and possible bias
resulting from the procedure used to recruit healthy controls. Survi-
vors and controls showed no significant differences with regard to age,
sex, height, or alcohol use, but controls had a lower fraction of ciga-
rette smokers and a trend toward longer education. Furthermore,
both groups showed relatively high general cognitive function and
may not be seen as representative of the full range of individual
differences. Even if survivors and controls did not differ with regard to
estimated IQ, and controlling for length of education did not change
the results, it cannot with certainty be ruled out that the differences in
brain volume and neurocognitive performance at least in part may
have been the result of a high-functioning control group rather than
an impaired ALL group. Patients were diagnosed during a period of
more than 30 years, and therefore, management was far from uni-
form. The long follow-up time is regarded as a strength of the study,
but it also allows for accumulated effects of confounders not related to
the previous leukemia.

In conclusion, this study shows that long-term ALL survivors had
significantly smaller volumes of a number of brain structures com-
pared with healthy controls, and neuropsychological performance
was correlated with volumes of cortical GM, caudate, thalamus, and
ICV. Given the possible limitations we have mentioned, future studies
are needed to confirm and clarify the significance of these findings and
the neurobiologic mechanisms involved.
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Appendix

Table A1. Lobar Volumes in ALL Survivors and Controls Group

Structure

Controls (n � 130) ALL Survivors (n � 130) ANCOVA
Volume

Difference (%)Mean (�L) SD Mean (�L) SD F P Partial �2

Frontal GM 95,991 10,220 93,230 9,947 8.147 .005 0.031 �2.9
Parietal GM 66,241 6,615 64,262 6,671 8.597 .004 0.032 �3.0
Temporal GM 59,474 6,515 57,799 5,745 8.168 .005 0.031 �2.8
Occipital GM 24,222 2,723 23,383 2,651 8.592 .004 0.032 �3.5
Insular GM 7,351 905 7,118 775 7.678 .006 0.029 �3.2
Frontal WM 85,821 9,834 83,517 8,661 6.264 .013 0.024 �2.7
Parietal WM 62,987 7,425 61,050 6,354 8.296 .004 0.031 �3.1
Temporal WM 36,528 4,585 35,376 3,689 7.918 .005 0.030 �3.2
Occipital WM 22,839 2,653 22,398 2,883 2.600 .108 0.010 �1.9
Insular WM 9,686 1,173 9,375 843 7.973 .005 0.030 �3.2

NOTE. Differences were tested with ANCOVAs, with age and sex included as covariates. Bold font indicates significance (P � .05).
Abbreviations: ALL, acute lymphoblastic leukemia; ANCOVA, analysis of covariance; GM, gray matter; SD, standard deviation; WM, white matter.

Table A2. Associations Between Treatment Variables and Neuroanatomic Volume in ALL Survivors (n � 130)

Structure

Spearman Correlation�

MTX

Steroids† Antracyclines† Vincristine† Irradiation‡IV† Intrathecal§

Intracranial volume 0.010 0.052 0.007 �0.082 0.018 �0.056
Cortical GM �0.017 0.041 0.029 �0.094 0.058 �0.007
Cerebral WM 0.024 0.001 �0.077 �0.124 0.017 �0.123
Cerebellar GM 0.126 0.115 �0.030 0.022 �0.018 �0.169
Cerebellar WM 0.020 0.080 0.029 �0.022 0.129 0.026
Accumbens �0.078 �0.065 �0.078 �0.082 0.059 �0.194

Amygdala 0.041 0.068 �0.028 �0.020 �0.084 �0.141
Brainstem 0.001 0.106 0.051 �0.021 0.169 �0.033
Caudate �0.087 �0.045 0.093 �0.105 0.105 0.045
Corpus callosum �0.043 �0.070 �0.136 �0.100 �0.072 �0.180

Hippocampus 0.062 0.146 0.021 �0.042 0.031 �0.019
Pallidum �0.112 �0.114 �0.045 �0.214 0.043 �0.059
Putamen �0.076 �0.049 0.096 �0.096 0.092 �0.033
Thalamus 0.009 0.025 0.038 �0.078 0.084 �0.152
Lateral ventricle 0.047 0.041 0.071 �0.022 �0.021 0.202

Third and fourth ventricles �0.037 0.071 0.111 0.019 0.074 0.211

NOTE. Italics indicate structures significantly different between survivors and controls. Bold font indicates significance (P � .05). None of the correlations remained
significant after Bonferroni correction for multiple testing (P � .003).

Abbreviations: ALL, acute lymphoblastic leukemia; GM, gray matter; IV, intravenous; MTX, methotrexate; WM, white matter.
�Controlling for age and sex.
†Cumulative doses per m2.
‡Received radiation therapy: yes or no.
§No. of intrathecal injections.
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