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Purpose of review

Thorough knowledge of normal neural foundations for cognitive behavioral development is fundamental to
understand the mechanisms of both neurodevelopmental disorders and normal adaptation. This review aims
at identifying the trends in MRI studies published within the last 18 months illuminating maturational
structural brain foundations for normal cognitive behavioral development.

Recent findings

Development is coordinated within neurocognitive systems, with predictable functional correlates. There is
great individual variability within the normal range. Relationships between brain and cognitive variance at
any given age are moderate, and appear to be of a complex and dynamic nature. Importantly, current
studies point to a dimensional component to cognitive and behavioral psychopathology in which
differences among healthy and clinical developmental groups exist along a continuum. Finally, factors
influencing and detectable in early development are likely to have lifespan consequences.

Summary

Brain development is highly coordinated, but the normal individual variation at any given age is
substantial. Relationships between brain and cognitive measures are typically moderate and may fluctuate
with age. A dimensional component to neural foundations for multiple developmental disorders makes the
study of normal individual brain differences in development even more important to understand both
normal and clinical cognitive behavioral outcomes throughout life.
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INTRODUCTION

Recently, researchers from the Child Psychiatry
Branch of the US National Institute of Mental
Health cautioned against the biases in pediatric
head circumference norms having influenced find-
ings on early brain overgrowth in autism spectrum
disorder [1]. This reflects a continuously trouble-
some fact: we need thorough knowledge of normal
development in order to accurately detect and
understand the mechanisms of neurodevelopmen-
tal disorders. We also need to understand the
normal development and adaptation in and of itself.
Here, we review recent MRI studies of normal brain
structural development and its relations to cognitive
and behavioral outcomes.
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DEVELOPMENTAL PATTERNS AND
NORMAL INDIVIDUAL DIFFERENCES OF
BRAIN AND COGNITION

The most dramatic brain changes take place early,
but large longitudinal studies on normal brain
iams & Wilkins. Unautho
development in infancy have until recently been
lacking.
Early brain and cognitive development
uncovered

Recent longitudinal data show that cortical gray
matter volumes more than double (108%) during
the first year of life, with lesser increase (19%) during
the second year [2]. Likewise, subcortical volumes
increase sharply during the first year [2]. Cortical
surface area expansion [3

&&

] appears region specific,
paralleling cognitive and functional development at
different stages: relatively more expansion in the
rized reproduction of this article is prohibited.
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KEY POINTS

� Development is coordinated within neurocognitive
systems, but relationships between brain and cognitive
measures are often moderate and of a complex and
dynamic nature.

� There is great individual variability within the normal
range, and differences between healthy and
pathological development can typically be of
dimensional, rather than categorical nature.

� Factors influencing and detectable in early development
are likely to have lifespan consequences.
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first year is seen in parts of superior temporal and
parietal, postcentral and occipital cortices, perhaps
reflecting rapid development of sensory functions.
In the second year, particular expansion is seen in
superior frontal, inferior temporal, and inferior and
superior parietal cortices, involved in motor plan-
ning and higher order visuospatial, sensory, and
attentional processing [3

&&

].
White matter microstructure also shows faster

rate of change in the first than the second year, with
rapidly increasing fractional anisotropy and decreas-
ing radial and, to a somewhat lesser extent, axial
Copyright © Lippincott Williams & Wilkins. Unau

(a) Development of white matter microstructure
in infancy
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diffusivity (see Fig. 1) [4
&

,5
&&

]. Again, region-specific
maturational patterns are observed: colossal tracts
exhibit larger radial diffusivity changes in the first
year. Motor and sensory tracts are more mature at
birth and develop more slowly [4

&

], in correspond-
ence with gray matter volume in sensory–motor
regions [2]. Association tracts continuously show
lower maturation degree in the first 2 years of life
[4

&

]. A leftward development of arcuate fasciculus
has been found, with more than 20% larger frac-
tional anisotropy values than the right in the first
year, suggestive of language-related lateralization
differences appearing [4

&

]. Individual differences
in white matter microstructure in neonates yield
higher heritability estimates than in adults, with
more mature regions showing less genetic variation
[6]. Multimodal and network approaches show
maturation from a local to a distributed organiz-
ation [7–9]. Both the dorsal attention and default-
mode network (DMN) start from an isolated region
in neonates, but evolve to synchronized networks at
1 year of age, when they also become anticorrelated
[9]. This pattern of development is enhanced, but
less dramatic in the second year [9], echoing struc-
tural maturation [2,3

&&

].
Although patterns appearing to correspond to

functional development can be identified from the
thorized reproduction of this article is prohibited.

(b) Relationship between white matter
microstructure and working memory in infants
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studies of early brain development [2,3
&&

,4
&

,10],
scarce data exist to assess these relationships
directly for normal individual differences. As a
striking example, better working memory scores at
12 months of age relate to higher fractional
anisotropy and lower radial diffusivity values in
select white matter tracts [5

&&

]. Fractional anisotropy
explained 10–16%, and radial diffusivity (see Fig. 1)
12–25% of the variance [5

&&

]. This testifies that
relationships between indices of brain and cognitive
development are of moderate nature.

Trends in preschool, school age, and
adolescent brain and cognitive development:
some apparent discrepancies and emerging
patterns
Dynamic changes take place in gray matter and
white matter throughout childhood and adoles-
cence, along with protracted cognitive development
[11

&

,12–15,16
&

,17,18]. Neuroanatomical variance
among individuals tends to increase with age [16

&

].
There are increases in total and regional cerebral
white matter [17], along with increasing fractional
anisotropy, and regionally decreasing mean diffusiv-
ity and radial diffusivity [19]. As for gray matter, the
picture appears complex, as discussed below.

Peak development of cortical thickness and
volume
A number of previous studies have pointed to
increases in cortical thickness well into school age
[20–22], followed by later maturational thinning.
However, a recent report based on the cross-
sectional large sample from the Pediatric Imaging,
Neurocognition and Genetics (PING) study
indicates monotonous decrease in cortical thickness
in the age range 3–21 years [16

&

]. In contrast,
cortical surface area expanded up until the age of
12 years [16

&

]. Thus, regional volume increases
and decreases are ongoing simultaneously in differ-
ent parts of the cortex, including increases in
temporal and prefrontal cortices in preschool years
and decreases in occipital and primary somatosen-
sory areas [23]. Although there are sex differences
also in development, this is outside of the scope for
the current review, and interested readers are
referred to, for example Giedd et al. [22]. The overall
picture is one of average gray matter and cortical
volume decrease in school age and adolescence
[12,16

&

,17].

Cortical foundations of cognitive
development: when less becomes more
The maturational cortical volume reduction and
thinning is associated with cognitive development.
Cortical reductions in afronto-parietal network have
opyright © Lippincott Williams & Wilkins. Unautho
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been related to improvement in working memory
and executive function in the age range 5–10 [24]
and 8–22 years [11

&

]. Independently of age, sex, and
general abilities, volume reductions explained
5–7% of the variance [11

&

]. However, indices of
general intellectual ability and executive function
showed positive correlations with temporal, frontal,
cingulate, and precuneus as well as early visual area
gray matter in children aged 6–18 years from the US
National Institutes of Health study of normal brain
development [25]. Other variables showed both
negative and positive weightings [25]. Relationships
appear to vary with age [26], with partly a reversal of
the pattern wherein ‘more is more’ with respect to
local gray matter volumes and measures of everyday
executive functions switching to a ‘more is less’
pattern [25]. This might be related to pruning,
dendritic changes, and myelination processes.
Similarly, thinner parietal cortices have been found
to predict better verbal learning and memory, visuo-
spatial functioning, and problem solving in the age
range 12–14 years [13]. There is regional variability
[27], for example, thinner left orbitofrontal cortex
predicted better 30-min visuospatial recall, possibly
reflecting executive components of memory proc-
esses in one study, whereas hippocampal volume
was positively associated with retention over 1 week,
possibly relating to consolidation of memory traces
[27]. There is currently great interest in how the
noted brain changes in adolescence relate to social
processing and risk taking, as recently reviewed else-
where [28–30].

Multimodal approaches to brain
developmental foundations of cognition
Multimodal imaging may illuminate the neurobio-
logical properties underlying maturational cortical
thickness and volume reductions. In a recent study,
regional superficial white matter patterns in devel-
opment (age 10–18 years) diverged from the more
widespread gray matter maturation, indicating that
the cortical thickness changes cannot largely be
explained by the encroachment of white matter into
deeper cortical layers [19]. Multimodal approaches
may also yield a fuller picture of cognitive founda-
tions [31]. Intraindividual variability [32], inhi-
bition, and task switching [33] in development are
related to microstructural properties of white matter
tracts, including fractional anisotropy. Exploring
the association further, Grydeland et al. [34] used
T1-weighted and T2-weighted MRI myelin mapping
combined with diffusion tensor imaging (DTI) to
show that intracortical myelin links with intraindi-
vidual variability in a speeded inhibition task across
the human lifespan. In the PING study, multimodal
imaging properties were also found to relate to
rized reproduction of this article is prohibited.
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cognitive control, which increased rapidly in pre-
teen years [35]. Surface area of the anterior cingulate
cortex accounted for a significant proportion,
whereas properties of large fiber connections
explained additional variance in cognitive perform-
ance [35]. Maturation of neural tracts and progress-
ive myelination appear critical correlates of the
development of stable performance of cognitive
control [32–35].

Patterns of coordinated maturational anato-
mical coupling and change across subcortico-
cortical and cortico-cortical regions are now being
delineated [36–38]. To some extent, such structural/
maturational networks are also predictive of func-
tional connectivity and network organization as
measured by resting state functional MRI [37]. Both
resting state [39] and task functional MRI [40] pat-
terns develop with age, but patterns of task-induced
DMN deactivations with age appear task specific
[41]. Stronger DMN coupling has been linked to
greater cognitive skill for vocabulary [36], as well
as for quality of past remembering and, marginally,
future imagination [42]. In the latter study, higher
score for past remembering correlated with default-
Copyright © Lippincott Williams & Wilkins. Unau
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FIGURE 2. Normal individual variation in brain and cognitive
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mode functional connectivity in the precuneus.
Again, multimodal imaging added to the picture:
temporal and frontal cortical surface arealization
explained the additional variance in quality of past
remembering and future imagination, respectively
[42]. As functional cortical areas grow in size devel-
opmentally, they may influence the structural prop-
erties of the fibers transmitting signals to and from
these regions [43

&&

]. In principle, the same could
apply to individual differences broadly, as experi-
ence-dependent plastic changes have been shown
[44–46].

In sum, a number of studies point to parallel
developments of brain and cognition. Age-inde-
pendent brain–cognition correlations are often
moderate, but rest on the principle that there is
much variance in brain and cognitive development
at any given age. This is illustrated in Fig. 2 [11

&

,12].
Striking variance even among high functioning
children and adolescents leads one to question
how well normal ranges can be defined. Recently,
studies have focused on the continuity of individual
differences in brain, cognition, and behavior across
the normal and clinical range.
thorized reproduction of this article is prohibited.
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A DIMENSIONAL COMPONENT TO
VARIATION IN NEURODEVELOPMENTAL
NORMAL DIFFERENCES AND
PSYCHOPATHOLOGY
The need to understand normal brain development
as a foundation for cognition and behavioral
adjustment is becoming increasingly clear. Features
contributing to neurodevelopmental diagnoses
may not be unique to disease, but represent quan-
titative differences along a continuum, elevations
of characteristics also present in broader and
healthy populations, as illustrated in Fig. 3
[47

&

,48]. Inattention and hyperactivity symptoms
in healthy children have been associated with
decreased regional cortical thickness and thinning
rate in attention networks, including frontal areas
[47

&

,49]. These results correspond to findings in
populations with attention deficit hyperactivity
disorder [48]. In another study [50], the association
of attention problems and cortical thickness was
not found, but symptoms of conduct problems
within the normal range were related to thinner
prefrontal cortices in a manner similar to that
opyright © Lippincott Williams & Wilkins. Unautho
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FIGURE 3. (a) Dimensional component of neurodevelop-
mental disorders. The figure shows areas wherein cortical
thickness relates to (a) group differences of healthy control
children and children with attention deficit hyperactivity
disorder (ADHD), with thinner cortices in the patient group
marked, and (b) a CBCL attention problems by age
interaction in healthy children, explained by negative
associations of attention problems and cortical thickness in
younger participants up to the age of 10 years. There is an
apparent overlap of the neural substrates, suggesting a
dimensional component to behavioral disorders, wherein
brain correlates of normal variation can be seen along a
continuum with those of clinical behavioral disorder.
Adapted with permission from [47&] and [48]. CBCL, child
behavior checklist.
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previously observed in conduct disorder [51].
Similarly, antisocial traits have been associated
with thinner prefrontal cortices, and autistic trait
ratings with thinner superior temporal cortex in
typically developing youth [52].

In some of the studies supporting a dimensional
view of psychopathology [47

&

,50], the relationships
are primarily found in younger children. Differences
observed at a given time point in development may
not necessarily be as evident later on [26]. However,
absence of age interactions has also been observed
[52], and neural foundations and cognitive symp-
toms of developmental behavioral problems do not
invariably vanish with maturation. For instance, a
study of adults with attention deficit hyperactivity
disorder and their unaffected siblings showed
impairments in both groups in sustained attention,
and regional neuroanatomical reductions in frontal
gray matter and white matter relative to controls
[53]. Recently, developmental trajectories of cortical
thinning with a convergence toward typical dimen-
sions in networks supporting attention and cogni-
tive control were shown to predict remittance versus
persistence of attention deficit hyperactivity dis-
order in adulthood [54].
THE LONG-TERM AND COMPLEX IMPACT
OF EARLY BRAIN DEVELOPMENT FOR
LIFESPAN COGNITIVE AND BEHAVIORAL
FUNCTION

The long-term impact of early events in brain devel-
opment on cognition is becoming increasingly
clear. Risk groups [55

&

,56–58], may show subtle
deviances in brain development early on. However,
while some correlates may be found in terms of
cognitive behavioral function in infancy [59], such
may not necessarily be easily identifiable. This
may in part be due to difficulties with testing you-
ng children, but also, consequences on complex
cognitive function cannot be observed until these
develop. Recent studies have pointed to prolonged
development of brain and cognitive function
throughout adolescence, especially for aspects of
attention and executive function [11

&

,12–14,16
&

,
17,33,35,36,60,61]. Hence, some early impacts
may in principle be observed only decades after.
Neonatal brain development and abnormalities
have been shown to predict memory, learning
and language outcomes, as well as socioemotional
development and psychiatric diagnostic status at
school age [55

&

,62–64]. Rogers et al. [55
&

] showed
associations between neonatal brain measures and
socioemotional development at age 5 years that
were similar whether those difficulties were reported
at both age 2 and age 5 or only at age 5. Multiple
rized reproduction of this article is prohibited.
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interpretations are possible, but it is plausible that
further brain maturation is necessary before the
impact of regional alterations on particular symp-
tom domains becomes evident [55

&

]. Woodward
et al. [65] showed that neonatal white matter abnor-
malities were important predictors of neurocogni-
tive outcome for very preterm children at age 4 and
6 years, with a tendency for impairments to become
increasingly apparent with age. Such tendencies in
our opinion call for a refinement of the concept of
‘developmental delay’. The implicit assumption is
that one would expect catch-up with time, but often
evidence does not support this. Effects of early
adversities may be continuous, or even become
more pronounced with age. This should, however,
not lead to a pessimistic view in which early inter-
vention is halted – a number of studies point to
Copyright © Lippincott Williams & Wilkins. Unau
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positive effects of early intervention [66–68].
Rather, it should alert us to the continuing needs
for studies of at risk groups, ensuring that appro-
priate measures and follow-up are continued also for
a prolonged time.
Continuous influences across the lifespan

Influences of early life characteristics on brain and
cognition can affect the whole lifespan, as illus-
trated in Fig. 4 [35,69,70

&

,71
&&

]. Normal variation
in birth weight has been found to predict neuro-
anatomical volumes and cortical surface area in
later childhood, adolescence, and early adulthood
[69,70

&

]. This may be due to a mixture of prenatal
environmental and genetic effects. A number of
common variants in risk genes for psychiatric
thorized reproduction of this article is prohibited.
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disorders were recently found predictive of brain
structure at birth, with some effects being highly
similar to those reported in adults [71

&&

]. Although
prenatal and perinatal development have long been
seen as critical in the foundation of mental illness
such as schizophrenia, present data call for a widen-
ing of this perspective to also comprise disorders
typically associated with aging, such as Alzheimer’s
dementia. Here, effects of select genes have been
interpreted within an antagonistic pleiotropy
perspective, wherein evolutionary changes beneficial
to survival in youth increase the vulnerability to
diseases in aging [72]. However, neonates carrying
apolipoprotein E e4, the major genetic risk factor for
Alzheimer’s dementia, were recently reported to have
reduced volumes of temporal cortex in much the
same manner as that reported in elderly [71

&&

]. This
indicates that the contribution to brain character-
istics associated with Alzheimer’s dementia risk is
likely present before birth and may represent a stable
risk factor. Similarly, for variants of the fat mass and
obesity-associated gene, associated with reduced
brain volumes in healthy aging and risk of
Alzheimer’s dementia [73,74], smaller brain volumes
were recently shown also in adolescents [75].

Developmental trajectories of brain and cogni-
tion unfold over time, and genetic and constitutional
risk factors interact with postnatal experiential and
environmental factors, but it is becoming increas-
ingly clear that influences very early in life are
important predictors. Remarkable predictive validity
of intelligence tests at age 11 for cognitive perform-
ance at age 90 years has been observed [76]. This calls
for a developmental lifespan perspective. If we were
able to take these early factors into account in a more
precise way, we might be more successful at identify-
ing other important influences in lifespan develop-
ment.
CONCLUSION

A number of principles can be outlined from the
current literature. First, brain structural develop-
ment is coordinated within neurocognitive systems,
but relationships between brain and cognitive
measures are often moderate and of a complex
and dynamic nature. Secondly, there is great indi-
vidual variability within the normal range, wherein
differences between healthy and pathological devel-
opment can typically be of dimensional, rather than
categorical nature. Finally, factors influencing and
detectable in early development are likely to have
lifespan consequences. Future research in these
areas will be important to inform on the mechan-
isms of both normal and pathological development
of brain and cognition.
opyright © Lippincott Williams & Wilkins. Unautho
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