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Figure 7. A temporoparietal network involved in episodic memory. Converging evidence points to the involvement of a
temporoparietal network involved in episodic memory, overlapping with the default network. The different structures within this
network are vulnerable to AD, and the atrophy here likely plays a vital part in the memory problems experienced by AD patients
already in the initial phases of the disease. There are reciprocal connections from the precuneus (pink) to the posterior cingulate
(dark blue) and the retrosplenial cortex (light blue) and to the inferior parietal lobule (light green), and further from the posterior
cingulate and retrosplenial cortex to parahippocampal (light green), entorhinal (red), and hippocampal (not shown) areas, and
further reciprocal connections extending anteriorly towards prefrontal areas. More detailed descriptions of these connections and
the functions of the different areas can be found in Cavanna and Trimble (2006) and Vann and others (2009). Please note that the
labels used in the figures are based on the parcellations automatically done by the FreeSurfer program, and the placement of the
anatomical borders may certainly be subject to debate. Further, other structures could also have been included in such a network.

AD from normal aging. To overcome these problems, some
researchers have tried to reveal patterns of brain change
that may be more characteristic for AD than normal aging.
These efforts have been promising. One study using unbi-
ased linear stepwise regression analysis found that there
was no overlap between the collection of brain structures
that best distinguished AD patients from healthy elderly
and the structures that best distinguished healthy elderly
from young controls (Fjell and others 2010b). McEvoy and
others (2009) used stepwise linear discriminant analysis to
identify regions that best aided discrimination of healthy
controls from AD patients in the ADNI database. Atrophy
in medial and lateral temporal, isthmus cingulate, and orbi-
tofrontal areas aided discrimination of healthy participants
from AD patients with 83% sensitivity and 93% specific-
ity. The results of this analysis were later applied to a group
of MCI patients, and it was found that the presence of
phenotypic AD atrophy at baseline was predictive of clini-
cal decline and structural loss. In the group of MCI patients
with this pattern of atrophy, 29% progressed to probable

AD in 1 year compared to 8% of the other patients. The
same general conclusion was drawn by an independent
group of researchers using high-dimensional pattern clas-
sification on an overlapping sample (Fan and others 2008).
In a longitudinal study spanning 10 years, Driscoll and
others (2009) found that even though all investigated brain
volumes declined in normal aging, the participants con-
verting to MCI in the course of the study showed a unique
pattern of structural vulnerability reflected in accelerated
atrophy in whole brain volume, CSF volume, temporal gray
matter, and orbitofrontal and temporal association cortices,
including the hippocampus. Thus, the use of multiple brain
areas seems to be a promising approach in the prediction
of cognitive and clinical change and structural degrada-
tion over time. Empirical and theoretical works along such
lines have also converged on a medial-temporal-parietal
network of brain structures related to episodic memory
function, where substantial AD-related atrophy is seen
(Fig. 7). This network overlaps greatly with the default or
resting state network.
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Comparisons of MRI and CSF
Biomarkers in Prediction and
Monitoring of Change

As argued above, a good biomarker should be able to
predict disease progression before substantial irrepara-
ble neurological damage is manifested. If amyloid is the
major causal event in AD, this gives hope that changes
in CSF levels of AB may be sensitive to AD in its earliest
phases. However, if amyloid is a downstream event, this
hope is less likely to be warranted. T-tau is likely related to
neuronal damage and degeneration in the brain, but it is
still possible that changes in CSF T-tau levels can be found
in early disease phases. A challenge to the use of T-tau for
early diagnosis, however, is that the CSF level of this pro-
tein is substantially elevated in a number of other condi-
tions, including healthy aging. Thus, it is possible that
atrophy as quantified by MRI is an upstream event com-
pared to the CSF biomarkers or that they are both caused
by some other events even further up in the chain of causa-
tion. This does not imply that the MRI cannot be a sensi-
tive marker of pathological processes early in the disease.
By use of state-of-the-art methods for analyzing MRI data,
even minute changes can be reliably detected, for instance,
changes in cortical or hippocampal volume of less than
0.5% (Holland and others 2009). It is conceivable that
the sensitivity of such techniques is high enough to allow
intervention at a stage where the cognitive consequences
of the neurodegenerative processes are small and maybe
even reversible. Thus, even though MR morphometry is
restricted to detecting atrophy, this does not imply that
MR cannot be used as an early, presymptomatic marker
of AD-related pathology.

Based on existing knowledge about the neurobiologi-
cal mechanisms behind changes in CSF biomarker levels
or brain atrophy in AD, it is not possible to state with
certainty whether CSF biomarkers or MRI morphometry
have the best potential to be the earliest marker of cogni-
tive and clinical decline in AD. However, we can look at
the existing evidence and compare the power of each of
the biomarkers in the prediction of decline in cognition
and clinical status, as well as rates of atrophy. The lit-
erature that directly compares the predictive power of
CSF biomarkers and MRI measures of brain structure is
unfortunately not very coherent. Discrepant results may
not only be related to differences in samples studied but
also to the sensitivity of the approach taken, perhaps
especially in MR morphometry, where different proce-
dures may yield partly different results (Tisserand and
others 2002). In the meta-analysis of longitudinal stud-
ies described above, the weighted mean effects sizes of
CSF biomarkers ranged from 0.91 to 1.11, while the cor-
responding number for atrophy in the medial temporal
lobe was 0.75 (Schmand and others 2010). Interestingly,

however, memory performance had an effect size of 1.06.
Thus, the authors concluded that CSF biomarkers and
MRI biomarkers were not very sensitive to preclini-
cal AD and did not outperform memory performance.
As pointed out by the authors, if these biomarkers are to
detect incipient brain disease that will lead to dementia
long before the first symptoms arise, the prognostic accu-
racy of these biomarkers would need to be clearly supe-
rior to measures of behavioral symptoms (Schmand and
others 2010).

In other recent studies using the ADNI database, there
is a tendency for MRI measures to outperform CSF bio-
markers in the prediction of clinical and cognitive change.
Vemuri and others (2009a, 2009b) compared the predic-
tive power of CSF biomarkers and structural MRI with
regard to 2-year changes in Mini-Mental Status
Examination (MMSE) and Clinical Dementia Ration—
Sum of Boxes (CDR-sb). They found that MRI (ventric-
ular volume) changed significantly over 1 year in healthy
elderly, MCI patients, and AD patients, while the only sig-
nificant change in biomarker levels was seen for T-tau in
healthy controls. A measure of atrophy, the so-called
Structural Abnormality Index (STAND), was a better pre-
dictor of subsequent functional change (CDR-SB and
MMSE) than CSF biomarkers, but both provided infor-
mation about future functional change even after adjusting
for baseline cognitive performance (Vemuri and others
2009a). In another ADNI study, it was found that combin-
ing MR morphometry and CSF biomarkers yielded supe-
rior diagnostic accuracy of AD patients compared to
controls, while MRI and PET measures were more predic-
tive of clinical change than CSF measures (Walhovd and
others 2010). Actually, even though the CSF measures
added to the diagnostic accuracy at baseline, they did not
predict 2-year clinical decline in MCI. These results are
in accordance with an independent study by Sluimer and
others (2010), where whole-brain atrophy rate quantified
by MRI was associated with change in MMSE, but changes
in the CSF biomarkers were not. Kohannim and others
(2010) used machine learning to diagnose groups and pre-
dict clinical change in the ADNI sample and found that
MRI generally was a more important predictor than
CSF biomarkers. Jack and others (2009) did not use CSF
measures but found that PiB retention was not signifi-
cantly related to 1-year changes in CDR-sb or MMSE,
while ventricular expansion correlated with both. In a
final independent study, it was found that hippocampal
volume and cortical thickness generally were better pre-
dictors of learning and episodic memory than CSF bio-
markers, especially better than A, also in MCI patients
(Fjell and others 2008). Thus, there are several recent
studies, based on the ADNI material and independent
studies, indicating that MRI is more closely associated
with clinical and cognitive change in MCI and AD than
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CSF biomarkers, although some studies indicate that the
combination may increase the predictive accuracy further
(de Leon and others 2006; Sluimer and others 2010;
Vemuri and others 2009b; Walhovd and others 2010).

Jack and others (2010) have proposed a model of dynamic
biomarkers of the AD pathological cascade, incorporating
the evidence pointing to the poor abilities of CSF bio-
markers to predict functional and cognitive decline in AD.
A main aspect of the model is that the impact of the dif-
ferent biomarkers is dynamic across the progression of
the disease, and the same biomarkers are not important
both early and later in the development. Accordingly, the
impact of AB42 on brain atrophy is early in the disease,
and the influence is then reduced as the patient approaches
an AD diagnosis. This fits with a study by Mormino and
others (2009), where it was concluded that the direct sub-
strate of memory impairment in AD was hippocampal
atrophy as quantified by MRI, not depositions of A} mea-
sured by PiB imaging. According to the model proposed
by Jack and others (2010), AP does not exert a direct influ-
ence on cognitive function but will initiate a cascade of
events that includes atrophy as measured by MRI, which
probably is the most direct causal agent for memory loss
and other cognitive decline. Thus, AB42 will be an infe-
rior predictor of cognitive decline compared to MRI in
MCT or at least AD but is more likely to be an early, pre-
symptomatic marker of an ongoing disease process in the
brain. As CSF AB42 levels will remain relatively stable
from the MCI stage and onwards, changes in this bio-
marker are less relevant to monitor when the MCI diag-
nosis has been reached. In accordance with this, Jack and
others (2009) found that PiB retention did not show larger
I-year changes in AD or MCI than in healthy controls in
the ADNI study. Rabinovici and Jagust (2009) speculate
that by the time patients are at the MCI stage or the mild-
est stages of AD, other pathological processes that are
independent of fibrillar AB may already be in motion and
that the therapeutic window for antiplaque interventions
may already be closed.

The latter model should draw attention to a related
and important issue, which is the question of how closely
related the different CSF biomarkers and MRI-derived
measures of brain structure and atrophy are. A relationship
between CSF biomarker levels and hippocampal volume
or atrophy has been shown in vivo (de Leon and others
2006; Fjell and others 2008; Hampel and others 2005).
One ADNI study found hippocampal atrophy to be related
to AP42 but not to tau (Schuff and others 2009), while
another ADNI study found AP42 to be related to ventricular
expansion (Chou and others 2009). Temporal atrophy rates
were found to be related to tau and to the tau/AB42 ratio
in 14 AD patients but not in 26 MCI patients from ADNI
(Leow and others 2009). Also based on ADNI data, it was

found that P-tau and P-tau/AB42 correlated weakly but
significantly (» = —0.20 and —0.22, respectively) with
right hippocampal volume in the AD group, while no sig-
nificant correlations were found in the control or MCI
group (Apostolova and others 2010). Sluimer and others
(2010), in an independent study, did not find any correlation
between AB42 and whole-brain atrophy rate in a sample
of controls, MCI patients, and AD patients when the tests
were adjusted for age, sex, and diagnosis. Surprisingly,
higher levels of P-tau were mildly related to a lower whole-
brain atrophy rate in the AD group. Change in MMSE was
related to brain atrophy but not change in CSF biomarker
levels. Thus, there appear to be relatively modest relation-
ships between CSF biomarker levels and MRI measures of
brain atrophy.

Fjell and others (2010a) used the ADNI study to address
the question of whether CSF biomarkers are upstream
events compared to MRI morphometry. They found that
CSF biomarker levels in MCI could not account for group
differences in brain morphometry at baseline but that CSF
biomarker levels showed moderate relationships to longi-
tudinal atrophy rates in numerous brain areas, not restricted
to medial temporal structures (Fig. 8). However, CSF bio-
markers were not more predictive of atrophy than baseline
morphometry. Interestingly, MCI patients with levels of
AP42 comparable with controls and of p-tau lower than
controls still showed more atrophy than the controls. Thus,
low levels of CSF AB42 do not seem to be a prerequisite
for higher atrophy rates in MCI. In addition, morphom-
etry predicted clinical change (in CDR-sb) better than did
CSF biomarkers. These results indicate that morphometric
changes in MCI and AD are probably not secondary to CSF
biomarker changes, at least not in a subgroup of the patients,
and that the 2 types of biomarkers yield complementary
information. Within the model proposed by Jack and others
(2010), one may speculate that atrophy independent of CSF
AP42 levels is a sign that the disease is already at a stage
where the role played by AP is less important and that other
mechanisms are driving brain atrophy, leading to progres-
sive loss of cognitive functions.

In a study related to the above described one, the same
group found that levels of CSF AP42 below a certain
empirically established threshold value were strongly
related to brain atrophy in healthy controls (Fjell and oth-
ers 2010c). Above this cut off, there were no significant
relationships between CSF AB42 and rate of atrophy. The
low AB42 group also showed tendencies for slightly more
atrophy than the high group, but the 2 groups had indis-
tinguishable memory performance. These results indi-
cate that AB42 is related to atrophy only in a subgroup of
cognitively normal elderly (about one third) but that sig-
nificant atrophy is seen in healthy elderly with normal lev-
els of CSF AB42. Thus, AB42 is unlikely to be a driving
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Relationship between CSF biomarkers and cortical atrophy in the temporo-parietal memory network

Cortical thinning in MCI p-tau and atrophy Ab42 and atrophy

Figure 8. Relationship between cortical atrophy and CSF biomarkers in mild cognitive impairment. The temporoparietal network
illustrated in Figure 7 is projected onto semi-inflated models of the right hemisphere. Left panel: Significantly thinner cortex in MCI
patients than healthy controls is illustrated with yellow and red colors. As can be seen, all areas of the temporoparietal network
are affected, especially the medial regions. Middle panel: Correlations between levels of p-tau and rate of atrophy in MCl patients
from ADNI. Right panel: Correlations between levels of AB42 and rate of atrophy in MCI patients from ADNI. As can be seen,

there is some overlap between the network and the areas showing correlations between CSF biomarker levels and atrophy,
especially in the medial temporal cortex for p-tau. However, CSF biomarker levels generally seem at least as closely related to
areas outside the network, for example, lateral temporal areas. All data are from Fjell and others (2010a).

force of atrophy in most cognitively normal elderly. The
participants were followed for 2 years, but without even
longer follow-up intervals, it is not possible to decide
whether the normal controls with low AB42 levels eventu-
ally will develop AD. According to Jack and others (2009),
the estimated average time taken to move from a negative
to a positive PiB scan result is 23.8 years. Thus, substan-
tially longer follow-up examinations are needed to decide
on the significance of the low AP42 correlations in the
cognitively healthy controls. However, the AB42 atrophy
correlations were not strongest in the regions most affected
early in AD, and the memory scores at baseline and after
1 year were normal. It can be argued that as A42 is more
diffusively spread out in the brain, one would not expect
correlations with atrophy in the typical AD regions to be
stronger than correlations with atrophy in other regions.
However, as the earliest signs of atrophy as evidenced by
MRI and by neuropsychological examinations are typi-
cally in the temporal lobes, it is certainly possible that the
atrophy related to AB42 in other parts of the brain in the
healthy controls is not of an AD-like character.

Also, research should focus on further development
of novel biomarkers based on CSF samples and MRI.
For instance, a recent study measured levels of 151 novel
analytes from ante-mortem CSF samples from AD patients,
patients with other neurodegenerative dementias, and

cognitively normal subjects who had been followed
longitudinally with repeated examinations (Hu and oth-
ers 2010). The main conclusion was that AD was best
distinguished from non-AD cases by a combination of
traditional AD biomarkers and novel biomarkers. Six of
the novel biomarkers (C3, CgA, IL-1a, I-309, NrCAM, and
VEGF) also correlated with severity of cognitive impair-
ment at CSF collection, and altered levels of IL-1a
and TECK were associated with subsequent cognitive
decline in 38 longitudinally followed MCI patients. Thus,
enrichment of the collection of CSF biomarkers could
aid in early detection, increase our understanding of the
neurobiological mechanisms involved, and ultimately
contribute to the development of better therapeutical
interventions.

For MRI, diffusion tensor imaging (DTI) studies have
shown that the white matter microstructure of MCI and
AD patients is affected to a substantial degree and that
this affection is at least partly independent of gray matter
atrophy and Wallerian degeneration (Salat and others
2008). Since DTT is not yet an established AD biomarker,
we have not included it in this review. Also, recent efforts
focusing on the intensity of the MR signal in T1-weighted
scans are promising and may add further to the possibility
of using MRI as a tool for early detection of AD (Westlye
and others 2010). Much more research is needed, but a
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great advantage of this method is that quantification of
signal intensity does not require extra scanning in that
regular MRI sequences can be used. Further, as intensity
measures are not related to morphometry, they are prob-
ably more sensitive to the microstructure of brain tissue
than regular thickness and volume analyses and may thus
constitute an even earlier marker of neurodegenerative
processes than morphometric markers.

Thus, CSF and MRI biomarkers are extremely useful
in research. CSF measures are applied in clinical settings
in several countries, while the potential of MRI mor-
phometry is increasingly often used. While both classes
of biomarkers can be used to aid diagnosis and prediction
of disease progression and conversion, MRI morphome-
try seems more appropriate as a marker of disease pro-
gression and predictor of cognitive and clinical change in
MCI and AD groups. More normative studies are needed
for MRI to fulfill its diagnostic potential also in clinical
settings. Still, we know too little about the relationships
between these biomarkers and the development of the
disease, which neurobiological mechanisms each of them
are sensitive to, and how to best utilize the information
that these biomarkers give us in aiding presymptomatic
diagnosis and intervention.
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