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SYNOPSIS 

The structure of the brain is constantly 

changing from birth throughout the lifetime, 

meaning that normal aging, free from dementia, 

is associated with structural brain changes. This 

paper reviews recent evidence from magnetic 

resonance imaging (MRI) studies about age-

related changes in the brain. The main 

conclusions are that (1) the brain shrinks in 

volume and the ventricular system expands in 

healthy aging. However, the pattern of changes is 

highly heterogeneous, with the largest changes 

seen in the frontal and temporal cortex, and in 

the putamen, thalamus, and accumbens. With 

modern approaches to analysis of MRI data, 

changes in cortical thickness and subcortical 

volume can be tracked over periods as short as 

one year, with annual reductions of between 

0.5% and 1.0% in most brain areas. (2) The 

volumetric brain reductions in healthy aging are 

likely only to a minor extent related to neuronal 

loss. Rather, shrinkage of neurons, reductions of 

synaptic spines, and lower numbers of synapses 

probably account for the reductions in grey 

matter. In addition, the length of myelinated 

axons is greatly reduced, up to almost 50%. 

(3) Reductions in specific cognitive abilities—for 

instance processing speed, executive functions, 

and episodic memory—are seen in healthy aging. 

Such reductions are to a substantial degree 

mediated by neuroanatomical changes, meaning 
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that between 25% and 100% of the differences 

between young and old participants in selected 

cognitive functions can be explained by group 

differences in structural brain characteristics.  
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INTRODUCTION 

At least two reasons exist to study the brains of 

healthy elderly people: First, most people 

experience changes in specific cognitive abilities 

during aging /1/, especially related to performance 

on speeded tasks /2/, executive function /3/, and 

episodic memory /4,5/ (but see /6/). Such cognitive 

changes are likely partly caused by age changes in 

macrostructural brain properties. Magnetic 

Resonance Imaging (MRI) can be used to quantify 

the volume or thickness of specific brain structures 

in vivo, yielding a window into the human brain 

during aging. Thus, by comparing the brains of 

young and elderly participants, and the brains of 

the same individuals scanned repeatedly as they 

get older, we may achieve a better understanding 

of the neuro-biological foundation for age-related 

cognitive changes, and how changes in the brain 

may lead to changes in cognitive function. This 

knowledge may illuminate why some healthy 

people experience higher rates of cognitive decline 

than others, and ultimately, whether ways can be 

found to effectively counteract this process.  

The second reason for studying the brains of 

healthy elderly people is that we must understand 

how the brain changes in normal aging to be able 
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to identify age-related pathology, especially 

Alzheimer‘s disease (AD). In what ways is the 

atrophy in AD qualitatively different from that 

seen in healthy aging? Recent research has shown 

that most brain areas that are atrophic in AD are 

also affected by healthy aging, although to a lesser 

extent /7/. Thus, attempts to differentiate AD from 

healthy aging at a very early stage can either be 

targeted at identifying accelerated atrophy in 

specific brain structures above atrophy seen in 

normal aging /8,9/, especially in the hippocampus 

and the entorhinal cortex /10-12/, or at identifying 

patterns of change across several brain regions that 

may indicate a pattern of atrophy characteristic of 

AD and not characteristic of normal aging /13-15/. 

This paper has three major themes. First, we 

will present what is known about the effects of 

healthy aging on brain morphometry, and some 

factors that may modulate these, including genetic 

variations. A short review of the results obtained 

with a newer MRI technique, DTI, will also be 

given, as this is a very promising measure related 

to white matter (WM) integrity. We will also 

discuss how the morphometric effects seen in 

healthy aging are different from the atrophy seen in 

AD. Second, we will discuss possible neuro-

biological foundations for the morphometric 

changes. What happens at the molecular level 

when a brain structure is reduced by e.g. 25% 

during the course of the adult lifetime? The final 

theme of this paper is the cognitive consequences 

of the macrostructural brain changes. We will 

review the studies that have directly targeted the 

cognitive correlates of age-related brain changes, 

and discuss to what extent morphometry can be 

used to explain the decrements in specific 

cognitive functions often seen among healthy 

elderly.  

The advent of MRI yielded an opportunity to 

study macrostructural characteristics of the human 

brain in vivo for the first time. Incredible 

developments in MR scanners and software have 

made MRI a tool of increasing value in the study 

of the effects on the brain of healthy aging and 

age-related degenerative disorders. For instance, 

the thickness of the cerebral cortex can now be 

measured with sub-millimeter accuracy /16/, and 

changes in cortical thickness between two time 

points can be measured with an error as low as 

0.5% /17,18/, enabling the identification and 

tracking of brain changes over short periods (See 

Figure 1 and Figure 2).  

COURSE OF STRUCTURAL BRAIN CHANGES 

IN AGING 

To date, more than 50 cross-sectional MR-studies 

have tested the effects of age on the volume  or 

thickness of various brain structures (for a table of 

31 cross-sectional studies reporting correlations 

between age and subcortical volumes, see /19/). 

Methodological differences related to scan quality, 

of 31 cross-sectional studies reporting correlations 

participant recruitment and screening, number of 

participants, brain structure measurement, and 

statistical choices make it challenging to directly 

compare results across studies. The general 

scientific consensus is that age influences total 

brain volume, but there are large differences 

between structures in how strong the effects are. 

Some structures are found to decline substantially 

in old age, while others appear better preserved. In 

addition, different brain structures show different 

age trajectories. Some brain areas are declining 

linearly from early in life, whereas others continue 

to increase in volume well into middle adulthood 

before eventually beginning to deteriorate in the 

later part of life.  

Most studies of age-effects on the brain are 

cross-sectional, and only age-differences, not age-

changes, can be observed in such studies. 

Especially, the issue of cohort effects is 

challenging when the age-span sampled often 

exceeds 50 years. Thus, the few longitudinal 

studies that exist are exceptionally important. Still, 

major methodological problems are also associated 

with longitudinal designs. First, scanner replace-

ments and upgrades make it very difficult to follow 

the same group of participants over longer periods, 

e.g. 10 or 20 years. Thus, only exceptionally do 

longitudinal MR-studies span more than 5 years. 

Second, selective drop-out constitutes a challenge, 

and re-recruitment at each follow up may be 

necessary to counteract this. Finally, because 

longitudinal studies require much larger efforts and 

finances, the samples sizes are usually smaller than 

in cross-sectional studies. Even with these caveats
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Fig. 1: Steps in processing of MRI scans. The figure 

illustrates the main processing steps in a freely 

available software package for calculation of 

brain volumes and cortical thickness based on 

magnetic resonance imaging (MRI) scans 

(FreeSurfer, see surfer.nmr.mgh.harvard.edu/). 

Figure made by Inge K Amlien. 

 

in mind, longitudinal studies are very important 

additions to the cross-sectional studies. We will 

start by giving an overview of the extant cross-

sectional MRI-aging literature, before comparing 

these results to the conclusions obtained by 

longitudinal designs.  

CROSS-SECTIONAL STUDIES OF AGE-

EFFECTS ON THE BRAIN  

The consensus from cross-sectional studies is 

that grey matter (GM) is reduced with age /20-33/, 

and that this reduction begins early in life /20,34-38/.  

Fig. 2: Calculation of cortical thickness and 

comparisons among different brains. The figure 

illustrates output from processing of MRI scans, 

how different brains are registered and 

compared, and the calculation of cortical 

thickness at each point (vertex) of the brain 

surface. Figure made by Inge K Amlien 

. 

GM loss in the cortex appears to be somewhat 

greater than in subcortical structures /19,24,32/. 

When specific structures have been studied in detail, 

the results have unfortunately diverged substantially 

across studies, and differences in how a structure is 

defined and how the scans were segmented comp-

licate comparisons. Adding to this problem, in 

several studies only a few structures are segmented, 

making it difficult to assess the relative age-effect of 

different structures. Fortunately, recent studies have 

addressed the issues of comparisons between 

different brain structures and samples directly, 

strengthening the general view that most brain 

structures decline in volume with age, but at
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TABLE 1 

Overview of cross-sectional studies of age-effects on brain morphometry 
 

Brain structure Main results Conclusion 

Limbic 
structures 

  

Hippocampus Effects 10 of 17 studies reviewed found that hippocampus shrank with age [24, 32, 39-46], 
five found no change [30, 47-50], one found reductions for men but not women [51], and one 
found reductions in right posterior but not anterior hippocampus [52]. Age effects on 
hippocampal volume normalized to global GM loss were not observed in two large studies 
[22, 53]. In a large multi-center study including five independent samples, significant age-
correlations were found for all but one sample [19]. 
Course Four studies found non-linear effects [32, 41, 42, 46], and non-linear relationships 
were found for all five samples in a large multi-center study [19]. 

The variability among studies is 
high, but part of the discrepant 
findings may stem for failure to 
account for non-linear effects. 
Likely affected by age, but not 
especially affected by normal 
aging compared to other 
structures. 

Amygdala Effects Has received less attention than the hippocampus, but reports indicate age effects of 
comparable size. Four studies found reductions [32, 39, 41, 54], three did not [24, 51, 52], 
and in two were reductions relative to global GM loss not observed [22, 53]. In the multi-
sample study, significant age-correlations were found for four of five samples [19]. 
Course Linearly related to age. 

Variability among studies, and 
effects comparable to 
hippocampus. Likely affected by 
age, with linear reductions. 

Basal ganglia  Heterogeneous effects across 
different constituent structures. 

Striatum Effects All eight studies found reductions in caudate [23, 24, 32, 43, 55-60], and significant 
effects in four of the five samples in the multi-sample study [19]. Four studies found 
reductions in putamen [32, 43, 56, 58], and in one additional study was reductions found in 
men but not women [61]. The effects are generally stronger for putamen than caudate. Age 
effects were not found on the lenticular nuclei in one study [24], but this include the globus 
pallidus in addition to the putamen, which may explain why age effects were not found. 
Course Caudate generally non-linearly related to age, while recent studies of putamen 
indicate linearity. 

Consistently found to be affected 
by age. Generally larger effects 
for putamen than caudate. 
Caudate non-linearly affected by 
age (decelerated decline in 
higher age), while putamen is 
likely linearly affected. 

Pallidum Effects Previous reports found weaker effects than for striatum, with none of four studies 
finding linear reductions [24, 56, 58, 62], while a quadratic reduction was found in a fifth [32]. 
Recent studies have reported significant age-reductions also for pallidum [19, 63, 64] or for 
the basal ganglion in general [65].  
Course Likely mainly linear 

Inconsistent findings, but the 
most recent studies indicate age-
effects. 
The course of change is likely 
linear. 

Thalamus/ 
diencephalic 
structures 

Effects Six studies found reductions [31, 32, 64, 66-68], two did not [23, 24] and three found 
lack of age effects relatively to global GM or whole brain loss [22, 52, 53]. Thalamus declined 
in all samples in the multi-sample study [19].  
Course Linear 

Consistently related to age, and 
the course of change is linear. 

Accumbens Effects Two studies found linear reductions [24, 32], and all but one sample in the multi-
sample study showed large and significant linear effects [19]. 
Course Linear 

Accumbens is a primitive and 
phylogenetically old structure, but 
is still subject to substantial and 
linear age-decrements. 

Brainstem Effects Relatively robust to effects of age, with small reductions found in one study [32], while 
the ventral pons has been found to be well preserved in another [69], no significant age-
change was observed in pontine structures in a third study [47], and significant linear effects 
found in two samples only in the multi-sample study [19]. 
Course Not related to age 

The brainstem is probably the 
best preserved of all brain 
structures in healthy aging. 

Cerebellum Effects Eleven studies found reductions in total cerebellar volume, cerebellar GM, cerebellar 
WM, or other cerebellar compartments [24, 32, 48, 52, 62, 64, 66, 69-72], one study found no 
effects on cerebellar WM [70], in contrast to a more recent study [73], one study observed 
that the age changes were exponential [62], and cerebellum cortex declined with age in all 
samples in the multi-sample study [19]. 
Course Cerebellum GM mainly linearly related, while WM are best characterized by a non-
linear function of prolonged volume increase and accelerated decrease in high age 

Consistently found related to age, 
but not very large effect sizes. 
GM linearly reduced, while WM 
follows a non-linear pattern of 
accelerated decrease in high age 

CSF and the 
ventricular 
system 

Effects There is agreement across studies that CSF compartments increase in volume with 
age [22, 24, 30, 32, 43, 45, 74-76], and some have also found non-linear age changes [19, 
22, 30, 32].  
Course Some degree of non-linearity (accelerated increase in high age) 

Consistent increases. May partly 
be caused by atrophy in other 
brain areas, e.g. deep WM, and 
partly from mild versions of 
normal pressure hydrocephalus. 
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Fig. 3: Effects of age on volumes of different brain structures. The bar charts to the left show percentage of the 

variance that can be explained by age. The bar charts to the right show how many standard deviations in volume 

that change over 50 years (decrease for all structures expansion for the ventricles). The sample consists of 1143 

healthy participants between 18 and 94 years, pooled from several independent studies /39/.  

 

highly different rates, and probably following 

different courses. In Table 1, an overview over 

status of knowledge of the effects of age on brain 

morphometry for several subcortical structures is 

given. 

Figure 3 (left) depicts the amount of variance 

in volume that can be explained by age in a series 

of brain structures. The data material is identical to 

that used in /39/, and consists of 1143 healthy 

participants between 18 and 95 years, pooled from 

several independent research projects /32;40-44/. 

All volumes were regressed on ICV, and the 

residuals used in the calculations. As can be seen, 

age explained between 3% and 46% of the 

variance in volume, with a median of 32.5%. 

cerebral spinal fluid (CSF) and the ventricular 

system are to a large extent affected by age, while 

putamen tops the list of the brain tissue structures. 

The hippocampus is also substantially affected, but 

does not stand out from the rest of the structures as 

especially vulnerable to effects of normal aging. 

The 4
th
 ventricle, brain stem, cerebellum WM, and 

caudate were the structures least related to age in 

these data.  

Figure 3 (right) gives the estimated number of 

standard deviations (SD) change from 20 to 70 

years (error bars represents standard error of the 

regression coefficient used to estimate the change). 

The estimated change across 50 years was between 

0.3 (brainstem) SD to 1.75 SD (putamen), with a 

median of 1.4 SD. Thus, the age-related changes 

are profound in terms of both explained variance 

and magnitude of change.  

Several subcortical structures increase in 

volume throughout most of adolescence and well 

into adulthood, e.g. the thalamus, brainstem, 

amygdala, hippocampus, and cerebral and cerebellar 

WM /45/. In contrast, thinning of the cerebral 

cortex starts at an early point in life /20, 46/, 

approximately at five to six years of age, but with 

substantial variations across different regions. This 

thinning continues throughout the adult part of the 

lifespan /20-32;47-50/. Within this general picture, 

however, a heterogeneous pattern of age effects on 

different parts of the cortex exists /27,29,41,51/. 

Unfortunately, interpretations have been hindered 

by inconsistency among the results from different 

studies /52/. However, as the quality of MR scans 

and the methods used to analyze them have 

undergone steady improvements over the last 

years, stronger agreement across different studies 

and samples is seen. 

Traditionally, regional cortical volume has 

been measured in vivo by the manual drawing of 

region of interests (ROIs) on MRI scans. In studies 

using such manual approaches, age has large 

effects on the frontal cortex, with significant but 

more moderate effects in temporal areas, posterior 
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association areas and occipital areas, and relative 

preservation of the primary sensory regions /41, 

48,52/. New segmentation tools have more recently 

given the possibility to study age effects continuously 

across the cortical mantle without pre-defining ROIs. 

Automated methods may have weaknesses, e.g. 

registration of morphologically different brains to a 

common stereotactic space and the need for 

smoothing, but they are still important in studies of 

aging. First, such methods require less manual 

intervention, which increases the reliability across 

raters and labs, and they are also much less time-

consuming. Second, without the use of ROIs, 

differences in anatomical definitions and placement 

of anatomical borders will not preclude comparisons. 

Third, the spatial resolution is not restricted to the 

size of the ROIs. The localization of the effects 

cannot always be known beforehand, and ROIs 

may thus hinder discovery of unexpected effects.  

From the results of cortical studies using 

automated techniques, the general consensus now 

is that the effects of age are strong in frontal and 

especially prefrontal areas /22,29,50,53-58/. This is 

in accordance with the ‗last in, first out‘ 

hypothesis, according to which the brain areas that 

are the latest to develop phylogenetically and 

ontogenetically are the first to be affected by 

normal aging. This view corresponds well with 

neuropsychological studies showing that executive 

functions, which depend heavily on frontal neural 

circuits (e.g. fronto-striatal circuits), are among the 

cognitive functions to be most affected by 

advancing age /59,60/ (more about this later). 

Several studies also find the occipital lobes to be 

negatively affected by age /29,50,53,54,56,58/. 

Finally, most studies demonstrate age effects on 

parietal cortex /22,29,53,55,58/, with some 

variations in localization. 

Within the frontal cortex, the findings across 

studies are not coherent. In some studies /29, 53/, 

thickening of the anterior cingulum is found, 

whereas it is found to be preserved or reduced in 

others /22,55,56,61,62/. A study comparing the 

effects of age on cortical thickness in six different 

samples found a significant thickening in the left 

cingulum in three samples from the USA 

(overlapping with the one used in /29/), but not in 

three samples from Nordic countries /58/. Further, 

some studies find sparing of the medial orbito-

frontal cortex /29/, whereas others report age 

effects throughout most of the anterior part of the 

brain /50,53/. Tisserand et al. /62/ suggested that 

the effects to some degree depended on the method 

of choice. Semi-automated and voxel-based 

approaches yielded the most prominent age effects 

within the lateral frontal and cingulate regions, 

whereas a manual approach yielded the strongest 

reductions in the lateral and orbital cortices. 

In aging research the temporal lobes are of 

special importance because they include and are 

functionally related to the hippocampi and other 

structures important for declarative memory. 

Thinning of the temporal lobes is seen in MCI and 

AD /63/. Further, it has been argued that the medial 

temporal volume (i.e. hippocampus) differentiate 

between healthy and pathological (e.g. AD) aging 

/15/ (see below). A relative sparing of the temporal
 

and parahippocampal cortices was found in one 

study /29/, and another found that age affected the 

entorhinal cortex relatively less than the rest of the 

cortex /22/. Other studies, however, have found 

thinning in temporal cortical areas /50,53-55,58/. 

Also, co-occurring volume reductions and 

increases in different parts of the temporal cortex 

have been reported /56/. Targeting morpho-metric 

effects in the temporal lobe with a newly 

developed semi-automated technique, one study 

found that entorhinal and perirhinal cortices, but 

not the posterior parahippocampal cortex, were 

reduced in volume with age /63/. This reduction in 

volume could be attributed mainly to reduction of 

the surface area of these regions, not the thickness 

of the cerebral cortex.  

Figure 4 (top) illustrates estimated thinning of 

the cerebral cortex based on a cross-sectional 

sample of about 684 healthy participants between 

18 and 94 years, drawn from previously published 

data samples /13,39,44/. As can be seen, thinning 

is seen throughout most of the cortex and is 

especially pronounced in the superior and inferior 

frontal areas, medial and superior temporal areas, 

and supramarginal cortices. The anterior medial 

temporal cortices, including entorhinal, as well as 

the anterior cingulate and medial orbitofrontal 

cortices, seem relatively spared. We believe that 

the age effects around the central sulcus, as well as 

the lack of effects in anterior parts of the cingulum, 

may be artefacts of the cross-sectional design. 



BRAIN CHANGES IN AGING 

VOLUME 21, NO. 3, 2010 

193 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Regional changes in cortical thickness per 

decade. Top: Reductions in cortical 

thickness in mm per decade estimated 

from a cross-sectional sample of 688 

healthy participants between 18 and 94 

years. (Figure made by Inge K Amlien.) 

Bottom: Percentage change in cortical 

volume over one and two years in 142 

healthy elderly (60-81 years of age) from 

the Alzheimer‘s Disease Neuroimaging 

Initiative (ADNI) database of MR-scans. 

Annual change of ≈ 0.5% can be seen 

across large sections of the brain surface, 

e.g. in temporal and prefrontal areas. The 

figure is a modified version of Figure 2 in 

Fjell et al, J Neurosci 2009, 29, 15223-31. 

 

 

 

 

 

Fig. 5: Differences between normal aging and Alzheimer‘s disease. Panel 1: Differences in cortical thickness 

between 96 patients with mild to moderate Alzheimer‘s disease (AD) and 93 healthy age-matched controls. 

All participants are drawn from the Open Access Series of Imaging Studies (OASIS). As can be seen, the AD 

patients have substantially thinner cortex in anterior temporal cortex, including entorhinal cortex, and in other 

parts of the so-called medial temporo-parietal episodic memory network, e.g. posterior cingulate/ isthmus of 

the cingulate and precuneus. Panel 2: Cortical areas that were statistically unique predictors of AD vs healthy 

elderly (red), or of healthy elderly vs. young (blue), in addition to areas predicting both (green). The data 

material consists of 96 AD patients, 93 healthy elderly and 137 young.  
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Age-effects on white matter 

The integrity of the brain‘s WM is postulated to 

be significant for cognitive function in health and 

disease /64-70/. The WM consists largely of 

myelinated long distance axonal projections of 

neurons and is important for the integration and 

coordination of neural activity between brain areas 

(see below). The effects of age on WM volume are 

different from those seen for much of grey matter, 

especially the cerebral cortex. The volume of WM 

increases in childhood and adolescence /20,26,34, 

35,71,72/, but for many years it was assumed that 

the WM volume was relatively stable throughout 

most of the adult lifespan /21-23,26,31,73/. Some 

studies found that the total WM volume was 

negatively related to age /24,32,48,74/, but the 

discrepancy among studies was substantial. Over the 

last few years, it has been acknowledged that 

substantial changes in WM volume characterize also 

the adult part of the lifespan. WM changes are non-

linear and may not be detected if only linear 

relationships are tested. Typically, a pattern is seen 

in which WM volume grows until 40-50 years 

before accelerating volume reductions set in /19,20, 

32,44,47,48,75-78/. Thus, the use of samples of 

varying ages could be a reason for the discrepant 

findings in the early literature. For instance, one 

study /20/ reported WM to be negatively related to 

age only from 70 years, but this age range had not 

been consistently included in aging studies. Jernigan 

and colleagues /24,75/ found that despite its later 

onset, WM loss was more rapid than grey matter 

loss, and ultimately exceeded it. As for grey matter, 

results indicate somewhat less age-related loss in 

deep subcortical regions than in the cerebral lobes 

/24/. Little or no decline is often observed in 

brainstem volume /19,32/, and several studies report 

sparing of the pons in aging /79-83/. Salat and 

colleagues /76/ recently published the most 

comprehensive study of WM volume changes to 

date, and found WM volume-age-relationships in 

several regions, including strong effects in frontal 

and temporal areas. 

The advent of DTI has yielded new oppor-

tunities for studying age-effects on WM in vivo. 

DTI is sensitive to the degree and directionality of 

water diffusion in the brain /84,85/, and this

information can be used to make inferences 

regarding the microstructural properties of the 

tissue. Because the diffusion will be stronger 

parallel with, rather than perpendicular to, 

myelinated nerve fibers, DTI can be used to gain 

information about the integrity of nerve fibers. The 

information that can be obtained about WM by 

DTI is complementary to volumetric measures /73, 

86/. Early studies by Salat and colleagues /87,88/ 

demonstrated that the diffusion parameters of WM 

changed with age, especially in the frontal areas of 

the brain/. Age-related decreases in the directionality 

of diffusion, the fractional anisotropy (FA), is now 

well documented /65,68,87,89-97/.  

For a long time, however, large-scale regional 

analyses focusing on the trajectories of changes in 

diffusion properties across the lifespan were 

lacking. Recently, Westlye and colleagues /44/ 

compared the lifespan trajectories for both regional 

WM volume and DTI measures in a large sample 

of 430 participants. Inverted U-shaped WM 

development was found for both volume and FA, 

as was expected because the study included 

children and adults of varying ages. The total WM 

volume peaked at approximately 50 years of age, 

which supported earlier findings of volume growth 

until middle age /19,24,48/.  

However, global FA peaked at around 30 

years, followed by a small, yet stable, linear 

decrease until approximately 65 years, with a 

subsequent accelerated decline. This did not fit 

well with the notion of continuous WM maturation 

extending into middle-age, but rather a three-

phasic lifespan model of WM development with 

accelerated alterations in the earliest and latest 

phases of life /78/. This pattern is supported by 

developmental studies indicating an asymptotic 

maturation from childhood to early adulthood /37, 

38,98/, and accelerating WM volume decreases in 

the latest part of the lifespan /19/. A large study by 

Kochunov and colleagues /99/ also confirmed the 

non-linear pattern of developmental and age-

related changes in FA. In a recent review, Madden 

and colleagues showed that both anterior-posterior 

and superior-inferior gradients of FA-changes are 

likely present in normal aging. We will discuss the 

implications of this for cognitive function in a later 

section of this review. 
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LONGITUDINAL STUDIES OF AGE 

EFFECTS ON THE BRAIN 

Longitudinal studies have reported annual 

gross brain volume decreases on the order of 0.2% 

to 0.5% /47,100-102/. The most studied structure is 

the hippocampus, due to its relevance in Alzheimer 

research. The hippocampus shows annual atrophy 

rates from 0.79% to 2.0% /7,11,78,100,101,103/, 

which tend to be somewhat higher than cross-

sectional estimates /51, 100, 103/. For instance, in 

a large study conducted by Raz and colleagues 

/78/, the annual hippocampus shrinkage estimated 

from cross-sectional data was 0.35%, whereas the 

shrinkage estimated from longitudinal data was 

0.79%. This finding indicates that rather than 

overestimating age-changes due to cohort effects, 

cross-sectional studies may actually underestimate 

real brain changes. Noteworthy, however, is that 

the interpretation of percentage change is often 

difficult for the hippocampus, as percentage change 

tends to show a non-linear age relationship. Thus, 

the estimated change will likely depend heavily on 

the age of each participant. In the Raz et al study, a 

quadratic function was not significant for hippo-

campal volume, but this will often constitute a 

challenge that needs to be taken into account. 

Entorhinal cortex shows decline rates somewhat 

smaller than those seen for the hippocampus, 

usually in the range of 0.3% to 2.4% /7,51,101, 

103,104/. As for the hippocampus, longitudinal 

estimates tend to be larger than the cross-sectional. 

In the Raz et al study, the cross-sectionally estimated 

annual atrophy for entorhinal cortex was 0.11%, 

whereas the longitudinal data indicated 0.32%. 

Atrophy rates in other parts of the brain have 

seldom been studied, with a few important 

exceptions /51,105-107/. These studies describe 

atrophy in several regions, with prominent decline 

in prefrontal cortex, as well as in caudate, cere-

bellum, hippocampus, and association cortices /78/ 

and parietal areas /106/, in addition to expansion of 

the ventricles /105/. In a recent study, significant 

atrophy was found in all 25 regional brain volumes 

tested, over periods extending as long as 10 years 

in some cases /107/. An earlier study found 

significant ventricular enlargement over one year, 

but no detectable change in total or regional brain 

volumes /28/. In a final study change over one year 

was tested in 142 healthy elderly in 48 ROIs /7/. 

This study used a newly developed and very 

sensitive algorithm for detecting longitudinal brain 

change /17/. A significant volume decrease or 

ventricular expansion was found over 1 year in 39 

of the ROIs. The only areas that did not show 

significant change was caudate, 4
th
 ventricle and 

ROIs around the central sulcus and in the occipital 

lobe. Over 2 years, only the postcentral gyrus and 

the pericalcarine sulcus did not decline 

significantly. The hippocampus (–0.81%) and the 

amygdala –0.81%) showed the largest reductions, 

and the median 1-year atrophy was –0.38% (not 

including the ventricles). Cortical atrophy typically 

ranged between –0.2% and –0.6% annually. The 

most atrophy was seen in frontal cortex, especially 

the superior frontal, lateral temporal (inferior, 

middle and superior temporal gyri), and supra-

marginal cortices. Relative sparing was seen around 

the central sulcus and in occipital cortex. Figure 4 

(bottom) shows the annual percentage change in 

cortex in a sample of 142 healthy elderly. The 

results mimic those from cross-sectional analyses 

to a substantial extent. In contrast to the cross-

sectional results, however, no effects were seen 

around the central sulcus. Further, thinning was 

seen in most of cingulate, which is also contrary to 

the cross-sectional effects. These differences may 

be due to variations in sample characteristics, for 

instance the higher mean age in the longitudinal vs. 

the cross-sectional sample, differences in the 

algorithms used to compute the age effects, 

differences in the age span sampled (cross-

sectional age span of about 70 years, compared 

with longitudinal measures over 1 and 2 years), 

and/ or artefacts from the cross-sectional design. 

For instance, cross-sectional designs are based on 

the assumptions that the only relevant difference 

between participants at different ages are their age, 

but the possibility that sampling bias may be 

different for various parts of the age-span cannot 

be excluded a priori. 

The results indicate that brain changes in 

healthy elderly are prominent even after short time 

intervals and that by using modern techniques for 

analyzing MR images, these changes can reliably 

be detected. Such methodological advances make 
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possible the use of MR technology to study 

relatively small changes in brain structures also in 

clinical settings, e.g. by monitoring atrophy in 

specific brain regions over time in individual 

patients at risk for various degenerative conditions, 

e.g. AD, or to monitor the effects of administered 

medications over short periods. Further, the results 

from longitudinal studies indicate that the effects 

seen in cross-sectional investigations are valid, and 

not artefacts from e.g. cohort effects.  

THE TRAJECTORIES OF AGE-CHANGES 

IN BRAIN STRUCTURES 

Brain volume increases during the first years 

of life and generally decreases during the last. The 

shapes of the trajectories that connect these two 

ends of the lifespan are not uniform across the 

brain. A brain structure can follow five basic 

courses. First, a structure can be relatively immune 

to the effects of age, which often is seen for areas 

around the central sulcus, medial occipital areas, 

and possibly the cerebellum and 4
th
 ventricle. 

Second, a structure can undergo a linear volume 

reduction, i.e. the effect of age is similar across all 

ages. This reduction is typically seen for e.g. the 

thalamus, accumbens, and pallidum. Also, most 

cross-sectional studies find that the relationship 

between regional cortical thickness and age is 

linear or almost linear in the adult part of the 

lifespan /58/. Third, a linear development or a 

plateau can be seen for the first part of the lifespan, 

and then accelerating decline may characterize the 

latter part. This picture can be seen for cerebellar 

WM. Interestingly, this pattern of change is likely 

to represent a common belief about brain changes, 

but is seldom reported in the cross-sectional 

literature. In longitudinal studies, however, 

correlations between age and rate of atrophy have 

been reported for selected cortical regions, 

indicating a pattern of accelerated atrophy among 

the oldest participants /7,78/. It is, however, 

challenging to rule out that this accelerated decline 

in old age is not related to effects of higher rates of 

incipient degenerative disorders in the oldest 

participants. The alternative version of this path is 

where linear changes are followed by deflations of 

effects in high age. Fourth, the course of change 

for a structure during the adult lifespan can follow 

a quadratic path, in which volume growth is 

prolonged before accelerating atrophy is seen in 

the latest part of the lifespan. Cerebral WM is the 

most typical example of this type of development. 

Finally, a cubic trajectory is theoretically possible, 

where for instance initial growth is followed by 

atrophy, followed by additional volume increase. 

This pattern is rarely observed, but may the case if 

external agents, e.g. iron depositions in higher age, 

should increasingly influence neuroanatomical 

volumes in old age /32/. 

The most commonly used statistical approach to 

describe the trajectory of brain change in cross-

sectional studies is a regression equation on the 

form β0 + β1age + β2age
2
 + ε. If β2 is significant, 

then the relationship can be said to be non-linear. 

This approach is valid, and the use of such higher 

order polynomials in research on brain aging was a 

huge step forward from testing only linear relation-

ships. Unfortunately, this approach is more suitable 

to reject a hypothesis of a linear relationship 

between age and brain structures than to yield an 

accurate description of the relationship itself. For 

instance, by this approach describing a situation in 

which relative stability or linear decline through 

middle age is followed by accelerating decline in 

higher age is impossible. Thus, at present, we can 

not rule out that progressive decline in brain 

volumes can be the case after a certain age, e.g. 70 

years, for some of the structures that usually are 

reported to be linearly related to age. Other 

statistical methods, e.g. the smoothing spline or 

locally weighted polynomial regressions (LOESS), 

may be better alternatives to describe the trajectory 

of change for a brain structure across the lifespan 

/108/. Thus, it is our belief that more research with 

large samples and sophisticated statistical methods 

is needed in this area before a more realistic picture 

of the course of brain changes in healthy aging can 

be given. 

The question of which curve best characterizes 

the age-changes of a specific structure is critical 

and relates to the question of whether brain age 

changes are continuingly going on through the 

adult lifespan, or whether adulthood in general can 

be characterized by essentially a preserved, stable 

brain, with structural changes occurring only in 

advanced aging. Additionally, the first question 
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also relates to the question of for how long the 

brain develops. For instance, the often reported 

increase of WM volume until 40-50 years of age 

has been taken to support a view of positive 

development, possibly serving increased cognitive 

functions, across large parts of the adult lifespan. 

Clinically, knowing whether accelerated decline of 

the volume of a specific structure can be taken as 

evidence of neurodegenerative conditions is 

important. If structures of known importance for 

e.g. AD follow a linear pattern of change in 

healthy aging, accelerated decline in e.g. the 

hippocampus, entorhinal cortex, or precuneus, 

could be used as a marker for neurodegenerative 

disease. Unfortunately, the hippocampus and WM 

volume, both vulnerable to AD /10,11,109,110/, 

seem to show non-linear age relationships /19/. 

The course of change of these structures per se 

may be more challenging to use as biomarkers to 

distinguish AD from healthy aging than if linear 

changes were expected in normal aging, and 

accelerated volume loss was seen only in disease.  

GENETIC FACTORS MODULATING 

BRAIN AGING 

General trends in brain aging are established, 

but individual variability is substantial. Whereas 

some persons show large decrements, others are 

able to maintain higher cognitive function and 

relatively intact brain structures well into advanced 

age. Knowledge of the factors that contribute to 

this variability is very important. Several 

conditions impact the aging of the brain, including 

physical and cognitive activity, nutrition, cerebro-

vascular health, and hypertension. The present 

review will focus on the effects of genetic 

variability. For a review of other modifying 

factors, please consult e.g. /111/.  

Twin-studies have shown that the character-

istics of both GM /112/ and WM /113,114/ are 

highly heritable and that the observed relationships 

between brain morphometry and cognitive function 

to a substantial degree are mediated by genetic 

factors /113,115,116/. About two-thirds of the 

genes in the human genome are directly related to 

brain function /117/.Thus, there is currently a huge 

interest in studying the effects of inter-individual 

genetic variations on brain function and structure. 

Especially, much interest has emerged in mapping 

the effects of substituting one nucleotide, the so-

called single nucleotide polymorphisms (SNPs), on 

brain structure. Knowledge about contributing 

SNPs will help us to understand the neurobio-

logical mechanisms involved in aging. For 

instance, if a SNP involved in myelin maintenance 

modulates the relationship between DTI parameters 

in a specific WM tract, aging and cognitive 

function, then this modulation will indicate that the 

integrity of the myelin sheaths in this tract indeed 

have an impact on a specific cognitive function in 

aging. This possibility has previously been tested 

only for a small number of specific candidate 

genes, e.g. apolipoprotein E (APOE).  

‗Imaging genetics‘ is the term used for the 

field of research that aims to connect genetic 

research with imaging studies of brain structure 

and function. Mattay and colleagues /118/ describe 

imaging genetics as a form of genetic association 

analysis, in which the phenotype is a measure of 

brain structure, chemistry or function, based on the 

assumption that these are closer to gene function 

than trait differences in overt behavior. In the field 

of cognitive aging, the application of imaging 

genetics has been surprisingly limited. Here, the 

primary goal would be to identify genes that 

accelerate age-changes in brain structure and 

function, and genes that make individuals more 

resilient to the effects of aging. However, this task 

is challenging, and Petrella and colleagues /117/ 

argue in a review that most studies are limited by 

small convenience samples, cross-sectional in 

contrast to longitudinal design, an exploratory 

nature, and lack of long-term clinical correlations. 

Adding to the complexity, almost certainly several 

genes affect each brain structure. In their seminal 

review of genetic effects on cognitive aging, Deary 

and colleagues /119 point out that age-related 

cognitive change is a continuous trait that, if it is 

affected by genes, is probably influenced by a large 

number of genetic differences (polygenic effects), 

and a smaller but unknown number of larger effects 

(oligogenic effects). Thus, studies correlating a 

single gene with e.g. hippocampal or prefrontal 

volume will likely see only part of the big picture in 

terms of interactions among various genes. For 

example, while both APOE4 and the BDNF Val-
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Met polymorphisms appear to affect hippocampal 

volume, it is not known if and how these two genes 

interact /117/. In the following, we are going to 

describe a small selection of SNPs that may affect 

age-related structural brain changes, with special 

focus on APOE as this gene has received by far the 

most focus in imaging genetics research. 

Effects of APOE on brain aging 

The ε4 allele of APOE constitutes the major 

genetic risk factor for AD /120-122/. Multiple 

interacting mechanisms are probably involved, 

many of which may also have an impact on brain 

aging in healthy persons. APOE functions as the 

primary transporter of endogenously produced 

lipids /123,124/, necessary for repair, growth, and 

maintenance of myelin, and the ε4 alleles are 

related to greater and faster myelin breakdown in 

later-myelinating brain regions /125,126/. APOE 

may also be involved in brain plasticity /124,127/, 

possibly in amyloid clearance, and we can 

speculate that APOE ε4 reduces the ability to cope 

with damage in the central nervous system (CNS). 

Supporting this hypothesis, (a) CSF biomarker 

levels were in one study found to correlate with 

memory performance in ε4 carriers only /128/, 

(b) ε4 carriers are more likely to develop AD after 

mild head injuries /129/, and (c) ε4 with concurrent 

changes in CSF biomarkers increase the risk of 

conversion from MCI to AD /130/. Further, many 

of the risk factors for AD, including APOE, have 

been suggested to contribute by impacting myelin 

breakdown /131/. Several recent neuroimaging 

studies have shown reduced WM integrity in 

patients with mild cognitive impairment (MCI) and 

AD /92,110,132-139/, in accordance with 

histological findings of partial loss of myelin, 

axons, and oligodendrocytes, as well as reactive 

astrocytic gliosis, in AD /140/. The ε4 allele has 

also been found to be associated with other 

biomarkers for AD, especially CSF levels of 

amyloid beta (Aβ42) /128/.  

Due to its general functions, APOE may have 

an impact on both GM and WM in healthy aging as 

well /141,142/. Nevertheless, although the basic 

functions of APOE in the brain are known, the 

direct effects of APOE on brain structure have not 

been easy to establish in healthy populations. Some 

studies have found negative effects of APOE ε4 

alleles on brain volumes in elderly, with most focus 

and strongest effects generally found in the hippo-

campus /143-149/. Shaw and colleagues /150/ 

showed thinner entorhinal cortex in young children 

and teenagers who were ε4 carriers, indicating 

possible life-long influences of APOE on brain 

structure. Still, we must note that the effect size in 

this study was small, and significant only at p = .03, 

even with more than 530 scans included in the 

analyses. Adding to this, several studies have not 

identified hippocampal volume differences between 

healthy APOE ε4 carriers vs. non-carriers in non-

demented aging samples /151-154/. In any case, 

volume differences do not show whether APOE 

exerts an influence through the aging process, or 

whether such differences are related to neuro-

developmental deficits. Based on cross-sectional 

data, Espeseth and colleagues /43/ found thicker 

cortex and steeper estimated decline in several areas 

in healthy middle-aged ε4 carriers. If this result can 

be replicated, then a thicker cortex in ε4 carriers 

could be related to developmental deviations, e.g. 

related to suboptimal myelination of U-fibers in 

areas directly beneath the cortex, causing the cortex 

to appear thicker on Mr scans. This picture fits less 

well, however, with the findings of a thinner cortex 

in children with ε4 /150/. Honea and colleagues 

recently used cross-sectional data to show increased 

GM atrophy in ε4 carriers, i.e. hippocampus and 

amygdala, as well as WM diffusion (reduced FA) in 

left parahippocampal gyrus. Still, a scattered pattern 

of opposite effects was also seen, in which APOE ε4 

carriers had a larger volume, e.g. in middle temporal 

and inferior frontal gyri. 

Several longitudinal studies have found greater 

rates of hippocampal atrophy in APOE ε4 carriers 

compared with non-carriers in non-demented 

elderly /155,156/. Crivello and colleagues /157/ 

published the largest study to date on the effects of 

APOE on brain aging, based on a longitudinal 

cohort of 1186 healthy elderly persons. The 

longitudinal analyses showed a relationship 

between age and the rate of GM and hippocampal 

loss. The greatest volume decline was seen in the 

ε4 homozygotes only, with no evidence for a dose 

effect. Thus, although a premature conclusion, 

possibly longitudinal studies are capable of 

identifying the subtle effects of APOE on brain 
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structure that are usually hidden in cross-sectional 

studies due to large interindividual variability. This 

view is supported by the findings of Jak and 

colleagues, in which cross-sectional comparisons 

revealed no effect of APOE on hippocampal 

volume, whereas longitudinal atrophy was 

significantly greater for the participants with at 

least one APOE ε4 allele. 

Fewer studies have addressed the effects of 

APOE on WM characteristics, even though the 

function of APOE as involved in lipid trans-

portation indicates that the effects on WM may be 

as likely as those on GM. recent research has 

shown reduced WM integrity /110/ and volume in 

patients with MCI or AD /76,137,158-160/, and 

some studies have shown the effects of APOE on 

diffusion properties of the posterior corpus 

callosum and medial temporal lobe /161/, para-

hippocampal gyrus /162/, and fronto-occipital and 

inferior temporal fascicule, splenium of the corpus 

callosum, subcallosal WM, and the cingulum 

bundle /163/. A recent study also showed higher 

correlations between the volume of different parts 

of the corpus callosum and age in ε4-carriers than 

in non-carriers, whereas no effects on GM were 

seen /164/. Interestingly, the volume of the 

different rOIs was generally not different between 

the APOE groups, only the age-slope, indicating 

that APOE exerts its effects on WM volume 

through life, and is not necessarily present at an 

early age. Although the latter was not explicitly 

tested, the data seem to indicate an opposite 

relationship between APOE status and WM volume 

in the early (ε4 > ε3) versus the late (ε4 < ε3) phase 

of adult life. Thus, the results are promising so far, 

and future research will settle the issue of whether 

effects of APOE are larger on WM than on GM in 

aging. Longitudinal studies will be especially 

important. To our knowledge, no longitudinal 

study has yet looked at the effect of APOE on WM 

integrity in aging.  

Effects of other candidate genes and brain aging 

Neurotrophins: Another set of variables of 

potentially great importance for individual variation 

in brain structure are the neurotrophins, a class of 

proteins that include nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), neuro-

trophin 3 (NT-3), and neurotrophin 4/5 (NT-4/5). 

Neurotrophins are important for brain plasticity 

and development and are involved in the regulation 

of neuronal survival /165,166/, axonal growth /167, 

168/, synaptogenesis /169,170/ and neurotrans-

mission /171/. Neurotrophins induce the survival 

/172/, development, and function of neurons /173/; 

are capable of signaling particular cells to survive, 

differentiate, or grow /174/; and prevent apoptosis 

and induce the differentiation of progenitor cells. 

The most studied SNP of the BDNF gene is 

Val66Met, which is expressed throughout the brain 

but particularly in the hippocampus where it plays 

a key role in long-term potentiation and long-term 

memory. Compared with Val-carriers, Met-BDNF 

carriers show larger age-related reductions of 

prefrontal cortical /175/ and amygdala volume 

/176/, and generally smaller hippocampal and 

prefrontal volumes independent of age /177/. 

Additionally, BDNF helps to stimulate and control 

neurogenesis, which occurs in humans postnatally 

and in adulthood primarily in the hippocampus and 

olfactory area. The differences in hippocampal 

volume between Val and Met carriers could be due 

to differences in dendritic complexity, fewer 

neuronal and supporting cells, and increased cell 

death or decreased neurogenesis during embryologic 

development or over the lifespan, as BDNF and its 

receptors can mediate all these processes /178/. For 

instance, one study of striatum in transgenic mice 

lacking postnatal BDNF found that both cell soma 

size and dendritic number and thickness were 

reduced, and later on, the number of neurons was 

35% lower /179/. In adults, variation in BDNF is 

related to human memory and brain volumes /180/. 

Yet, how allelic variations in genes coding for 

neurotrophins affect cognitive abilities through 

normal variations in brain structure, e.g. how 

BDNF affects the relationship between memory 

consolidation and hippocampal structure is largely 

unknown. 

Neuregulin 1: Of possible relevance for the 

lifespan trajectories of WM is a specific variant of 

the Neuregulin 1 (NrG1) gene, associated with 

reduced WM density and anisotropy. As WM 

development is a very slow process continuing 

throughout childhood, adolescence and well into 

adulthood /37,181/, the genes regulating myelin 

may be very important for cognitive development 
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and aging. A few cellular studies have related NrG1 

to myelination /182/, and some DTI studies exist 

/183-185/. NrG1 has also been related to reaction 

time measures in a attention task, which can be 

interpreted to mean that this gene is related to the 

capacity for the fast transfer of information in the 

brain, probably though its effect on myelin/183/. 

Genes modulating inflammatory processes: 

‗Proinflammatory‘ cytokines affect apoptotic, neuro- 

degenerative and excitotoxic processes, modulate 

neurotransmitters, and neuroendocrine responses, 

and have been associated with risk for AD /186/. A 

few studies have tested the effects on cognitive 

function in the elderly of polymorphisms within 

this set of genes—interleukin-1b (IL-1b), tumor 

necrosis factor alpha (TNF-α), and Interleukin-1b-

converting enzyme (ICE)—and relationships to 

cognitive functions, e.g. memory, speed, and 

executive function have been found /117/. 

Nevertheless, we know of no attempt to relate 

these SNPs to brain structure. 

Other genes of established or likely importance 

for cognitive functions are catecholaminergic genes 

(e.g. catechol-O-methyl; COMT), serotonergic 

genes, KIBrA and GrM3 (glutamate receptor, 

metabotropic), but the significance of these genes 

for brain structure, or whether they modulate the 

relationship between changes in brain structure and 

changes in cognitive abilities in aging, is not known 

/117/. Also the ancestral allele of one ADrB2 SNP 

was associated with corpus callosum integrity and 

cognitive function in aging in one study, in which 

some evidence that ADrB2 partially mediated 

cognitive function via corpus callosum splenium 

integrity was also found /187/. Interestingly, one 

study found this polymorphism to be inversely 

related to cognitive abilities in younger and elderly 

participants /188/, which suggests that the poly-

morphism is more closely related to individual 

differences in normal cognitive aging than to 

lifelong cognitive ability differences /187/. 

Although APP (amyloid precursor protein) and 

Presenelin 1 and 2 (PSEN 1 and PSEN2) have 

been implicated in familial AD, there does not 

seem to be evidence linking these to differences in 

brain structure and cognition in aging /117/.  

As seen from the above, relatively scarce 

evidence exists for the effects of specific SNPs on 

brain aging. There may be several reasons for the 

relatively weak gene-brain relationships that have 

been observed so far. One is that even though a 

large proportion of our genes are expressed in the 

brain, to distinguish pure genetic influence from 

gene  environment interactions is difficult. Thus, 

such factors as nutrition, physical exercise, cognitive 

activity, etc may affect brain morphometry and 

how the brain is affected by aging; individual 

differences at the level of these factors may be 

affected by genetic variations. Thus, possibly a 

substantial amount of the genetic influence on 

brain structure may be indirect through influence 

on modulating factors. Second, different brain 

parameters may be related to different genes. For 

instance, a recent study of the Vietnam Era Twin 

Study of Aging (VETSA /189/) sample found that 

both cortical surface area (0.89) and thickness 

(0.81) were highly heritable but were essentially 

unrelated genetically /190/. This finding means 

that cortical volume, the typical measure in studies 

of heritability of GM, combines two distinct 

sources of genetic influences that may confound 

the underlying genetic architecture of brain 

structure. For instance, a recent study found that 

common sequence variations in a region in and 

around MECP2 were associated with cortical 

surface area but not with cortical thickness, were 

specific to male gender, and were restricted 

cortical regions (cuneus, fusiform gyrus, pars 

triangularis) /191/. The finding was replicated 

across two independent samples, one including 

participants with psychiatric disorders, the other 

including patients with Alzheimer‘s dementia. 

Third, as highlighted by several authors /118,119/, 

the effect on brain aging is almost certainly 

polygenetic, with several genes each accounting 

for a small proportion of the variance. As 

mentioned above, interactions between different 

genes and between genes and environmental 

factors are likely.  

Large samples are needed if better genetic 

models of brain aging are to be obtained, probably 

consisting of several thousand participants. Also 

difficult to ascertain is whether a SNP affects the 

trajectory of cognitive aging per se, or whether the 

effect is secondary to a degenerative condition 

/119/ (see below for a discussion of healthy aging 

vs. AD). Finally, most studies of the effects of 

specific SNPs on brain aging are cross-sectional. 



BRAIN CHANGES IN AGING 

VOLUME 21, NO. 3, 2010 

201 

Due to the large inter-individual variability in brain 

morphometry, most likely SNPs affecting the age-

trajectories of different brain areas will be much 

stronger predictors of brain change than of brain 

differences. This pattern seems to appear when 

effects of APOE are studied in cross-sectional vs. 

longitudinal samples. 

DIFFERENCES AND SIMILARITIES BETWEEN 

THE EFFECTS OF NORMAL AGING VS 

ALZHEIMER’S DISEASE 

One important line of research in the field of 

AD is the identification of biomarkers than can be 

used to aid early detection and diagnosis, and to 

monitor disease progress and possibly the effects 

of therapeutic trials. AD is associated with a range 

of structural brain changes that can be measured in 

vivo /8-12,192,193/. Recently, structural MrI was 

suggested as a research criterion for AD diagnosis 

in a consensus paper /194/. Nevertheless, as even 

healthy aging affects most of the brain, being able 

to identify brain areas that are affected only in AD 

and not in healthy aging is not realistic. AD is an 

age-related disease, and the brain changes in AD 

are seen on top of the brain changes observed in 

healthy aging, which makes it difficult to distinguish 

atrophy that is related to AD from atrophy that is 

common among the elderly, whether they have AD 

or not. Thus, a recent line of research has focused 

on whether the pattern of change across different 

brain structures can be used to dissociate AD from 

normal aging. The effects of AD are especially 

prominent in a medial temporoparietal neural 

network involved in episodic memory function 

/195/, which includes the hippocampus /8,10,196, 

197/, entorhinal, retrosplenial, posterior cingulate, 

and precuneus cortices, whereas frontal effects are 

more moderate in the early stages of the disease 

/9,192,198-204/. Additionally, in the lateral temporal 

cortex, especially in the medial and superior 

temporal gyrus, large effects of AD are seen /9, 

192,205,206/. As reviewed above, morphometric 

brain changes in these areas are also seen in the 

healthy elderly of advanced age /7,19,32,58,207/, 

even though at a much smaller scale. For instance, 

one longitudinal study found an annual atrophy of 

hippocampus of –0.84% vs. –3.75% in healthy 

elderly vs AD, and of –0.47% vs. 2.87% for the 

middle temporal gyrus.  

Still, while degeneration of the medial temporo- 

parietal memory network has been suggested as a 

signature for AD, change in a frontostriatal 

network supporting executive functions has been 

proposed as a hallmark of healthy aging /4,15/. To 

clarify the question of how unique the effects of 

AD are, comparisons of the effects of AD with 

those of healthy aging across several areas and 

circuits simultaneously have been necessary. A 

few recent studies have addressed this issue 

directly. Head and colleagues /15/ found accelerated 

hippocampal volumetric reductions in mild AD 

compared with healthy aging. In addition, age-

related differences were found to be greater in 

anterior than in posterior callosal regions, and 

these differences were not augmented by mild AD. 

In one study, age-related decline was observed in the 

volume of the prefrontal cortices, insula, anterior 

cingulate, superior temporal gyrus, inferior parietal 

lobes, and precuneus, and AD-patients had 

additional reductions of volume in the hippo-

campal formation and entorhinal cortices /208/.  

In one of our own studies, we found that the medial 

temporoparietal memory network distinguishes AD 

patients from controls better than the frontostriatal 

network, whereas the fronto-striatal network 

distinguishes healthy elderly from young participants 

better than the medial temporo-parietal network 

/13/. In Figure 5, millimeter difference in cortical 

thickness between the patients and healthy elderly 

are shown, as well as the cortical areas that 

uniquely distinguished AD patients from healthy 

elderly, the areas that distinguished healthy elderly 

from young, and the areas that distinguished both 

AD from healthy elderly, and healthy elderly from 

young (overlap).  

This result was supported in a later longitudinal 

study based on the large ADNI (Alzheimer‘s Disease 

Neuroimaging Initiative) database. In healthy aging, 

larger than average atrophy was seen in the frontal 

cortex as well as the temporal cortex, whereas a 

larger than average atrophy was seen in the 

temporal cortex only of AD patients /7/. Similar 

findings were obtained by Raji and colleagues /14/ 

who showed that age and AD exerted independent 

atrophy patterns, but with substantial overlap of 

effects in hippocampus and entorhinal cortex. 
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Driscoll, Resnick, and colleagues /107/ analyzed 

1017 scans of 138 participants from the Baltimore 

Longitudinal Study of Aging, followed annually 

for up to 10 years. The authors concluded that an 

age-related regional volume loss was apparent and 

widespread in normal participants, but that MCI 

was associated with a unique pattern of structural 

vulnerability reflected in differential volume loss 

in specific regions. Together, these studies support 

a view of healthy aging characterized by changes 

in the fronto-striatal network, whereas AD may be 

relatively characterized more by changes in the 

medial temporoparietal circuitry.  

An alternative approach was used in another 

study based on the ADNI database. McEvoy and 

colleagues /9/ used stepwise linear discriminant 

analysis to identify regions that best discriminated 

between healthy controls and Alzheimer patients. 

The authors then used a classifier trained on these 

data to determine whether presence of phenotypic 

AD atrophy at baseline was predictive of clinical 

decline and structural loss in an independent group 

of patients with mild cognitive impairment (MCI). 

They found that atrophy in mesial and lateral 

temporal, isthmus cingulate, and orbitofrontal areas 

aided discrimination of controls and Alzheimer 

patients, with fully cross-validated sensitivity of 

83% and specificity of 93%. Further, patients with 

MCI who had phenotypic AD showed significantly 

greater one-year clinical decline and structural loss 

than those who did not, and were more likely to 

have progression to probable AD. Thus, even 

though it is not possible to identify a single brain 

structure that is preserved in healthy aging and 

atrophic in AD, the pattern of change across 

structures seems to be different. 

Causes of brain changes in aging: molecular and 

cellular basis 

As shown above, the overwhelming evidence 

from MRI-research indicates age-related volumetric 

brain changes. Structural MRI, however, tells us 

less about the molecular underpinnings of the 

observed morphometric effects. For instance, while 

thinning of the cerebral cortex is almost linearly 

related to age 6-7 years of age to old age, the 

neurobiological foundation of the thinning is likely 

to be at least partly different in children and elderly. 

Thus, obtaining a better understanding at the 

molecular level of the neurobiological mechanisms 

responsible for the morphometric changes seen 

would be beneficial. Further, as noted by Esiri, it is 

interesting and possibly no coincidence that the 

major age-related neurodegenerative diseases, AD 

and Parkinson‘s disease (PD), particularly affect 

cells that are selectively vulnerable to aging itself— 

cortical and hippocampal pyramidal cells in the 

case of AD and pigmented brain stem neurons in 

PD /209/. Loss of neurons that form long cortico-

cortical projections in the association neocortex is 

probably directly related to AD, but the same 

circuits that are vulnerable to degeneration in AD 

are vulnerable to synaptic alterations short of 

neuron death, likely impacting cognitive function 

also in normal aging /210/. Thus, this information 

makes the case that if we want to understand these 

diseases, then we have to understand the brain 

changes that occur in normal aging. Further 

supporting this view are recent studies showing 

that the CSF levels of Aβ peptides that are related 

to AD /211/ is just as strongly related to atrophy in 

the healthy elderly as in patients with MCI or AD 

/18,212/.  

In a recent review, Esiri /209/ highlighted the 

great demand of neurons for oxidative metabolism 

in the generation of energy as a key factor in brain 

aging. A neuron demands an exceptional amount 

of energy through a lifetime. The transmission of 

impulses requires ion gradients to be maintained 

over long stretches of axonal membrane, which is 

extremely energy consuming. Further, some neurons 

are very large, which leads to high energy demands 

related to maintaining a very large surface membrane 

and transport of molecules and organelles to 

distant parts of the cell. Oxidative metabolism 

requires mitochondrial activity, which again will 

generate oxygen free radicals that have the 

capacity to damage proteins, nucleic acids, and 

lipids, and interfere with many aspects of normal 

cell metabolism and function /209/. Among the 

consequences are both reduced and increased gene 

expressions. One study found that genes involved 

in synaptic plasticity, vesicular transport, and 

mitochondrial function showed reduced expression 

after 40 years /213/. This decrease was followed by 

an induction of the stress response, antioxidant and 

DNA repair genes. The authors speculated that 
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DNA damage may reduce the expression of 

selectively vulnerable genes involved in learning, 

memory, and neuronal survival, thus initiating a 

program of brain aging that starts early in adult life 

/213/.  

Rutten and colleagues /214/ suggested that the 

modulation of the nuclear DNA (nDNA) damage 

response by eliminating neurons with a high 

amount of unrepaired nDNA damage in the aging 

brain may lead to a functional improvement in 

networks of these neurons and to a better 

functioning of the aging brain in general. The 

authors argue that if the nDNA repair mechanisms 

become insufficient to repair the damage during 

aging due to decreased repair capacity or to an 

increased amount of nDNA damage, then nDNA 

damage will remain unrepaired and will accumulate, 

possibly resulting in cellular dysfunction. As aging 

may reduce the apoptotic response to genotoxic 

stimuli, this deficiency may contribute to increased 

nDNA damage and mutation with age /215/. Thus, 

the aging brain may benefit from an age-related 

loss of neurons, which would otherwise lead to 

dysfunction /214/. Most likely, a substantial 

amount of neurons must be lost before clinically 

detectable functional or cognitive decrements are 

seen, with a loss of up to 60% of the dopaminergic 

neurons in the substantia nigra before Parkinson‘s 

disease is manifested /216/. 

Neuronal loss was earlier believed to be a 

major factor in volumetric reductions and cognitive 

decrements in normal aging. Research has demon-

strated that hippocampal volume is proportional to 

the neuronal number /217/, that larger brains 

generally contain more neurons /218/, and that 

some studies have identified negative relationships 

between neuronal number and age in certain brain 

regions /219/. Nevertheless, it now seems clear that 

age-related decreases in the number of neurons in 

the healthy human brain cannot account for the 

observed reductions in neuroanatomical volumes 

/20/, with less than a 10% reduction in neuron 

number from 20 to 90 years of age typically being 

seen. In addition, contrary to the hypothesis that 

neuronal death in aging causes age-related changes 

in cognitive function, studies of memory in rats 

have suggested that age-related cognitive decline 

occurs in the absence of significant neuron death in 

any major, cytoarchitectonically defined component 

of the hippocampal system /220/. The evidence 

indicates that this decline is likely to be true for 

cerebral cortex as well. Terry and colleagues /221/ 

found age-related decrements in brain weight, 

thickness of certain cortical regions, the neuron-

glia ratio midfrontally and inferior parietally, and a 

shrinkage of large neurons, but concluded that 

neuronal density was relatively unchanged. The 

authors found that the most salient change was 

shrinkage of the large neurons with a consequent 

increasing numbers of small neurons, i.e. constant 

neural density coupled with diminished cortical 

volume. In a review paper, Peters and colleagues 

/222/ conclude that no strong evidence was found 

to support the concept that significant numbers of 

neurons are lost during normal aging from the 

human cerebral cortex while keeping open the 

possibility that regional losses of neurons from one 

architectonic area or cortical layer with age are 

possible. Presently however, no strong case has 

shown that (1) the neuroanatomical volumes 

reductions in normal aging are caused by loss of 

neurons, or that (2) if loss of neurons occurs in 

specific regions, this deficit causes cognitive 

decrements. A recent study showed cortical 

thinning in the frontal and temporal neocortex, 

despite relatively constant neuronal count numbers 

across a 50 year age-range /223/. Other studies 

have reported that glial cells were not significantly 

reduced in number either /224/. 

The question of neuronal loss has been difficult 

to settle, but as reviewed above, agreement has been 

greater that neuron size decrease modestly with age, 

especially in the neocortex /209/ and hippocampus 

/225/. Neuron size likely reflects dendritic and 

axonal aborization of the cell. More extensive cells 

require more energy, more protein synthesis etc, 

which again will require a larger cell body to 

support these processes /209/. In line with this, an 

overall decrease in synaptic density is observed 

with age, with a special focus on dendritic spines 

in the cerebral cortex /209/. For instance, signifi-

cant reductions in dendritic neuropil and an almost 

50% reduction in spine number and density have 

been reported in humans above 50 years of age 

/226/. Still, dendritic values were found to be 

relatively stable after 40 years of age, and the 

authors suggested that dendritic and spine degener-

ation in the elderly may not be an inevitable 
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consequence of the aging process /226/. Still, 

dendritic degeneration may be a major factor 

causing the volumetric brain reductions seen in 

both autopsy and MR-studies. Freeman and 

colleagues /223/ recently provided evidence for 

this view and suggested that a loss of neuronal and 

dendritic architecture, rather than a loss of neurons, 

underlies neocortical volume loss with increasing 

age in the absence of AD. A series of studies by 

Small and colleagues /227/ have also shown that 

normal aging vs. AD likely affect specific cells in 

specific brain regions. The authors ague that 

entorhinal cortex is especially vulnerable in AD, 

while normal aging primarily targets the granule 

cells of the dendate gyrus. 

Studies of dendritic trees have also revealed 

some indications of neuronal plasticity in aging. 

For instance, one study found some compensatory 

increases in the branching pattern in a subset of the 

dendrites in parahippocampal gyrus in response to 

the loss of other dendrites /228/ and suggested a 

model in which the aging cortex contains both 

regressing dying neurons and surviving growing 

neurons. The same groups of researchers later 

refined the picture by replicating the findings of 

increased dendritic extent in the dendate gyrus 

granule cells between middle age and early old age 

/229/. In the oldest old (nineties), however, dendritic 

regression was found, indicating some degree of 

regional specificity. 

As described above, WM is known from 

morphometric studies to exhibit a pattern of 

protracted growth until middle adulthood, before 

accelerating decline is seen in the latter half of the 

lifespan. Histologic studies in general support the 

morphometric findings and provide insight into the 

neurobiological correlates to the morphometric 

reductions. Postmortem studies of humans and 

primates have confirmed WM loss /230/ and 

myelin breakdown in normal aging with loss and 

shrinkage of myelinated fibers /231-235/. For 

instance, one study found the total myelinated fiber 

length in males to be 176.000 km at the age of 20 

years, and 97.200 km at the age of 80 years, with 

corresponding length for females being 149.000 

and 82.000 km /231/. Similar findings were 

obtained in independent studies /224/. Thus, 

myelinated fibers seem to be extensively affected 

by normal aging processes. Still, a simple 

relationship between degeneration of myelin and 

WM atrophy in aging has not been definitively 

established /232,236/. Among complicating factors 

are redundant myelination, sometimes observed 

with higher age /232/. The same may be true for 

fluid bubbles in the myelin sheet, which also have 

been observed with age /236/. Further, we should 

bear in mind that even though WM consists of 

myelinated fibers, the fibers are of different types 

depending on the neurons of origin, of different 

axon diameters, and are affected by age to different 

degrees. Axons that are myelinated later in life 

often have smaller diameters and seem more 

vulnerable to age changes /231,235,237/. Further, a 

large part of WM consists of glial cells, i.e. 

oligodendrocytes and astrocytes, which may be 

differentially affected by age /238/. Thus, many 

features of WM are not directly related to myelin 

and may be related to the morphometric age-

reductions seen. Still, there seems to be a 

consensus that myelin break-down is an aspect of 

healthy aging, and that this breakdown contributes 

to the loss of WM volume detected in morpho-

metric MRI-based in vivo studies. 

CONSEQUENCES: EFFECTS OF BRAIN 

CHANGES ON COGNITIVE FUNCTION 

As reviewed above, little doubt remains that 

the brain undergoes substantial structural changes 

during healthy aging, and that a regionally hetero-

genous pattern is seen, with different structures 

affected to different degrees. Further, although 

much more research is definitely needed, we also 

have some knowledge about the neurobiological 

underpinnings of the macro-structural changes. 

The last topic of this review is the question of to 

what degree the brain changes seen lead to altered 

cognitive performance. The causality embedded in 

this question is of course very hard to isolate, but 

much effort has been made to pinpoint how the 

age-cognition relationship may be explained by 

age-related morphometric changes. Most researchers 

agree that normal aging is associated with reduced 

cognitive abilities within several domains, especially 

mental speed, episodic memory function, executive 

and flexible cognition, and non-verbal problem 

solving. As the volume and thickness of the frontal 
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cortex decline with age—and this area is known to 

support executive functions and flexible cognition— 

it is tempting to speculate that the former is 

responsible for the latter. Likewise, there are 

moderate morphometric changes in the hippo-

campus and medial temporal cortex, and moderate 

reductions in episodic memory.  

In research, the general hypothesis of reduced 

regional brain volume causing reductions in 

specific cognitive abilities is often framed as 

―brain structure X mediates the relationship between 

cognitive function Y and age‖. Nevertheless, what is 

very often reported is a correlation between brain 

structure X and cognitive function Y, with or 

without age included as a covariate. A significant 

correlation between brain structure and cognitive 

function without controlling for age is the first step 

to yield support for the general claim of structural 

changes mediating cognitive changes. Yet, we 

must bear in mind that if both brain structure and 

cognition are expected to correlate with age, a 

relationship between the two would not be 

surprising, and neither would a correlation between 

either of the two and hair loss. If the correlation is 

significant when effect of age is statistically 

accounted for, then this is interesting because it 

indicates a relationship between structural properties 

of the brain and cognitive function. However, such 

a result does not tell us anything about the role 

played by aging. If the brain structure and the 

cognitive function are both highly correlated with 

age, then regressing out the shared variance with 

age may even leave them uncorrelated. In our 

opinion, the most important question regards how 

likely it is that age-related structural brain changes 

play a causal role in age-related cognitive changes. 

Indirectly, this statement can be framed as the 

question of to what extent age-related variability in 

cognitive abilities is shared with age-related 

variability in brain structure.  

Although a plethora of studies have looked at 

the relationships between brain structure and 

cognitive performance in aging, few have 

addressed the question in this way. Madden and 

colleagues /239/, in a review paper on the role of 

WM integrity in cognitive aging, argued that to 

justify that structural brain changes may cause 

cognitive changes, three conditions should be 

considered: (1) A test of the age-related difference 

in the relation between the WM and cognitive 

measures (2) the WM measures should have a 

significant relation to the measures of cognition 

that is independent of age, and (3) the age-related 

variance in the cognitive measure should be 

attenuated by including the WM measures in the 

regression model predicting cognition from age. 

Madden and colleagues argue that individual 

studies have addressed a variety of different, 

although related issues that do not always map 

directly onto the fundamental question of the 

possible causal role of WM changes as observed 

with DTI on cognitive performance in aging. We 

suggest that the same, to a substantial degree, is 

true for morphometric studies of both cortical and 

subcortical structures. Still, there are several 

notable exceptions. In this review, we focus on 

studies that have tried to answer the question of 

what causal role brain changes in aging may play 

for the observed cognitive decrements, and not 

studies that only have shown that a relationship 

between brain structures and cognitive 

performance exists with or without the influence of 

age statistically controlled for. 

A moderate relationship between gross 

measures of cognitive functions (e.g. IQ) and gross 

measures of brain volume (e.g. total brain volume) 

is established, with correlations typically around 

40 /240,241/. As previously argued, this relation-

ship seems to be mainly of genetic origin /115/. 

Yet, positive correlations between specific cognitive 

functions, e.g. episodic memory and executive 

functions, and the morphometric characteristics of 

specific brain areas, e.g. hippocampus/temporal 

lobe and prefrontal cortex, have been more 

difficult to establish /242-246/. Still, several recent 

studies have found relation-ships between, for 

instance, episodic verbal memory and brain 

structures implied in the temporoparietal memory 

network /247-249/, recall and hippocampus, recog-

nition and entorhinal cortex /250/, and between 

different brain areas and speed of processing /251, 

252/, executive functions /251,253,254/ and 

attention /252/. Studies identifying brain structure-

cognition relationships may serve as an indication 

that the changes in brain structure in healthy aging 

can contribute toward explaining the decrements in 

cognitive performance. However, if cognitive 

decrements to some extent are related to structural 
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reductions in aging, then it is possible that the 

relationships gradually will be stronger with 

advanced age, or that some relationships with 

cognitive function will be found only in aging. 

Such a view is advocated by Cyma van Petten /242/, 

who coined it ‗the neuropsychological perspective‘, 

according to which volume decreases due to normal 

aging or disease, are accompanied by memory 

decline, whereas brain structure-cognition correla-

tions are not necessarily found among young 

participants. One study found that elderly persons 

with high performance abilities (Wechsler‘ 

Abbreviated Scale of Intelligence, performance 

score /255/) had a thicker cortex than that of the 

elderly with average performance scores /256/. No 

corresponding group differences were identified in 

the young. The observed effects were ascribed to 

age-related brain changes being different in higher 

vs. average functioning participants, and were 

likely not only due to characteristics that are 

observable early in life.  

Naftali Raz and colleagues /257-260/ 

published a series of studies using path analysis to 

test the role of brain morphometry in mediating 

age-related cognitive changes. In one study, the 

prefrontal volume was found to account for 25% of 

the age-associated variance in perseveration, while 

frontal WM hypointensities accounted for 49% 

/257/. Also, age showed an initial correlation of 

–.28 with working memory, which dropped to –.20 

when neuroanatomical variance was accounted for. 

Thus, this study directly addressed the question of 

how much of the age-related decline in cognition 

that could be accounted for by morphometric 

differences. With a similar approach, the same 

group showed that age-related deficits in working 

memory were mediated by decreased prefrontal 

volume, that smaller prefrontal cortical volume 

increased perseveration indirectly through working 

memory /258/, and that neural and cognitive 

factors completely mediated age differences in 

episodic memory /259/ and perceptual skill learning 

/260/. Thus, this series of studies demonstrate that 

structural brain characteristics can explain a 

substantial proportion of the age-related decline in 

a wide range of cognitive abilities, and that a 

certain functional anatomical specificity exists, in 

that specific cognitive abilities are related to 

specific brain areas. Along similar lines, Kochunov 

and colleagues /261/ found that structural brain 

measures fully captured age-related variability in 

executive function. As the neuro-anatomical 

variables in all these studies were measured on a 

region of interest basis, the authors could not test 

for brain-cognition relationships outside the few 

selected regions. Bartzokis and colleagues /262/ 

provided evidence for a relationship between 

transverse relaxation rates (R2) of frontal lobe WM 

and finger tapping speed in aging. The two 

measures correlated .45 in an adult lifespan 

sample. Most convincingly, however, the two 

measures showed almost indistinguishable 

quadratic age-trajectories, with peaks at 39 years in 

both cases. The authors argued that speed of 

movement requires high-frequency action potential 

bursts and is associated with myelin integrity. 

Thus, they speculated that because myelination is 

quadratically related to age, this may be the neural 

substrate for similar trajectories of transverse 

relaxation rates and cognitive processing speed.  

The studies reviewed above are cross-

sectional. Cardenas and colleagues /263/ showed 

that baseline morphometry predict longitudinal 

decline in neuropsychological performance, i.e. left 

entorhinal cortex and cerebellum predict a longi-

tudinal decline in memory, left anterior temporal 

white matter and cerebellum predict object naming 

abilities, and frontal WM and cerebellum predict 

longitudinal changes in executive functions. Rabbitt 

and colleagues /264/ showed that baseline levels of 

CSF, interpreted as a proxy for life-long brain 

atrophy, predict decline over the previous 8-20 

years on speed and marginally of WAIS, but not on 

three different tests of memory. 

Very few longitudinal studies exist that relate 

atrophy rates as measured by brain scans at at least 

two time points, to changes in cognitive function 

over time. One exception is a study published by 

Rodrigue and Raz /265/, who found that a greater 

annual rate of shrinkage of entorhinal cortex, but 

not hippocampus and prefrontal cortex, was related 

to poorer memory performance. Another study 

found greater reduction of hippocampal volume 

over time in elderly persons with declining 

episodic memory compared with those with stable 

memory performance /266/. 

A substantial amount of research has focused 

on functional brain changes in aging, e.g. differences 



BRAIN CHANGES IN AGING 

VOLUME 21, NO. 3, 2010 

207 

between young and elderly in cognitive activation 

patterns measured with functional MRI (fMRI), 

positron emission tomography (PET), or 

electrophysiological recordings (EEG/ERP) /267-

269/. These studies showed changes in activation 

patterns between young and elderly participants, 

and between participants of different cognitive 

abilities. For instance, Cabeza and colleagues /268/ 

found that the high-functioning elderly recruited 

bilateral brain areas in a retrieval task, whereas the 

lower functioning elderly showed a more 

asymmetrical pattern that was more similar to that 

of young participants. Such findings have lead to 

the idea that age-related changes are more 

functionally than structurally based /249/. Still, 

most researchers would probably agree that 

changes in activation patterns between younger 

and elderly participants are rooted in structural 

brain changes, even though such changes may be 

subtle. Cabeza and colleagues /249/ and Logan and 

colleagues /270/ suggest that age-related activation 

changes have a neurogenic origin, i.e. that they are 

associated with physiological age-related brain 

changes. Possibly these changes are not detectable 

by structural MR scans even though several studies 

have shown that structural and functional changes 

often accompany each other in aging /266,271/. 

THE IMPACT OF WHITE MATTER AGING 

ON COGNITIVE FUNCTION 

Due to the modular nature of the human brain, 

so to speak, all cognitive tasks require the 

integration of information from relatively distant 

brain areas. Most likely, inter-individual variation 

in the integrity of the myelinated long-distance 

axonal projection fibers that constitute the major 

part of the brain‘s WM is related to cognitive 

abilities. DTI studies have shown that the micro-

structural properties of WM are continuously 

developing and changing throughout the entire 

lifespan /37,38,44,99/, which necessitates a 

thorough examination of the possible role of WM 

microstructural changes in cognitive aging. The 

basic processing speed has long been known to 

decline with aging, with reductions starting in the 

twenties or thirties. Because processing speed is 

important for performance of most cognitive tasks, 

this decrease has even been proposed as a 

fundamental mechanism behind cognitive decline 

in healthy aging /2/. One cause of this age-related 

slowing is likely to be WM integrity, which is 

correlated with reaction time measures in both 

young and elderly participants /272/. The hypothesis 

of disconnection in aging has been proposed to 

accommodate such findings /65,237,239,273/, 

according to which cognitive decline in aging is 

related to decreased efficiency in communication 

between different brain areas, in a sense leading to 

a disconnection problem. In a review published in 

December 2009, Madden and colleagues /239/ stated,  

“The integrity of cerebral white matter is 

critical for efficient cognitive functioning, but 

little is known regarding the role of white 

matter integrity in age-related differences in 

cognition” (p 415).  

 

Kennedy and Raz /96/ note that many 

discrepancies are found in the literature on WM-

cognition effects in aging, and propose several 

possible explanations, including differences in 

methods of measurement, e.g. whole brain voxel-

wise analyses, use of large ROIs, or localized and 

specific, sometimes fiber-tract specific, regional 

measures. Further, selection of cognitive measures 

also varies widely across studies and is often 

limited to single global measures differences in 

sample composition exist, and substantial differences 

between studies exist regarding the definition of 

what constitutes a healthy older adult /96/. 

In their recent review, Madden and colleagues 

/239/ conclude that independent of age, variation in 

WM integrity is correlated with cognitive perfor-

mance, particularly in tests relying on speed of 

information processing and executive functioning. 

An important question regards how specific are the 

cognition-WM effects. Given that the individual 

differences in WM microstructure are related to 

cognition due to the role of WM in enabling 

speeded and efficient transfer of information 

between distant brain structures one could expect 

the effects on cognitive performance to be general 

and unspecific. Madden and colleagues argue that 

even though the general trend of DTI studies 

suggests that WM integrity is related to processing 

speed and executive functioning, whether age-

related differences in these aspects of cognitive 
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functioning can be fully separated at the behavioral 

level is not clear. If age-related differences in 

executive abilities are partly independent from age-

related decrements in speed of processing, this 

would fit with the suggested anterior-posterior 

gradient in WM aging /87,88/. Speed of processing 

and executive functioning share substantial age-

variance /274/ but give independent contributions 

to the variance in fluid intelligence in elderly /59/. 

Madden and colleagues /239/ argue that inter-

preting age-related variation in WM integrity in 

terms of the anterior-posterior gradient and 

executive functioning may be a useful starting 

point, but that this approach is unlikely to account 

for all results.  

Kennedy and Raz /96/ have argued that age-

related differences in executive functions do not 

depend only upon intact prefrontal WM, but rather 

reflect the integrity of a widely distributed network 

of connections, including fronto-parietal and 

cerebellar connections. Based on these premises, 

the authors suggest that the term ―associative 

regional aging‖ may be more appropriate than 

―frontal aging‖, and that, 

“If maintenance of optimal cognitive perfor-

mance in older adults depends upon 

compensatory “rerouting” of the information 

flow, then such a process is significantly 

jeopardized by reduced anisotropy and 

increased diffusivity in these regions (p. 925)”.  

 

In their study, Kennedy and Raz found multiple 

dissociations among specific age-sensitive 

cognitive skills and the regional relationships with 

WM integrity, i.e. relationships between age-

related degradation in anterior brain areas and 

processing speed and working memory, decline in 

posterior areas and inhibition and task switching 

costs, and central WM regions and episodic 

memory. Still, widely distributed pathways were 

involved, and reduced integrity of these in aging is 

likely to have wide-reaching effects on cognitive 

performance. 

As emphasized by Madden and colleagues 

/275/ in their review paper, an important question 

independent of that related to identifying age-

cognition relationships per se regards whether 

interactive effects occur in aging-white matter and 

cognition-white matter relationships. Few studies 

have addressed this issue directly, but the evidence 

for the role of WM in mediating age-related 

decrements in cognition is starting to emerge. 

Madden and colleagues found that the age-related 

variance in a response-time derived measure (drift 

rate) is substantially attenuated by individual 

differences in FA in frontoparietal WM pathways. 

Gold and colleagues /276/ observed that FA of the 

left superior longitudinal fasciculus mediates age-

related variance in task switching. Zahr and 

colleagues /277/ found that diffusion properties of 

the genu and fornix mediate the age-related 

changes in working memory, motor performance, 

and problem solving, whereas the age-related 

differences in motor performance are influenced by 

several pathways, including splenium and uncinate 

fasciculus. Additionally, Charlton and colleagues 

/278/ provided evidence for the view that WM 

diffusion properties mediate age-related changes in 

cognition. Thus, although the number of studies to 

date is not substantial, evidence is accumulating 

supporting the role of WM microstructure in 

cognitive age-changes. More studies are needed, 

however, especially on the relationships between 

WM microstructure and morphometry, e.g. cortical 

thickness, in explaining age-related changes in 

cognition.  
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