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Abstract: Extensive efforts are devoted to understand the functional (FC) and structural connec-
tions (SC) of the brain. FC is usually measured by functional magnetic resonance imaging (fMRI),
and conceptualized as degree of synchronicity in brain activity between different regions. SC is
typically indexed by measures of white matter (WM) properties, for example, by diffusion
weighted imaging (DWI). FC and SC are intrinsically related, in that coordination of activity
across regions ultimately depends on fast and efficient transfer of information made possible by
structural connections. Convergence between FC and SC has been shown for specific networks,
especially the default mode network (DMN). However, it is not known to what degree FC is con-
strained by major WM tracts and whether FC and SC change together over time. Here, 120 partic-
ipants (20–85 years) were tested at two time points, separated by 3.3 years. Resting-state fMRI
was used to measure FC, and DWI to measure WM microstructure as an index of SC. TRACULA,
part of FreeSurfer, was used for automated tractography of 18 major WM tracts. Cortical regions
with tight structural couplings defined by tractography were only weakly related at the functional
level. Certain regions of the DMN showed a modest relationship between change in FC and SC,
but for the most part, the two measures changed independently. The main conclusions are that
anatomical alignment of SC and FC seems restricted to specific networks and tracts, and that

Additional Supporting Information may be found in the online
version of this article.

This research was carried out in whole or in part at the Athinoula
A. Martinos Center for Biomedical Imaging at the Massachusetts
General Hospital, using resources provided by the Center for
Functional Neuroimaging Technologies, P41EB015896, a P41 Bio-
technology Resource Grant supported by the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), National Insti-
tutes of Health. This work also involved the use of instrumenta-
tion supported by the NIH Shared Instrumentation Grant
Program and/or High-End Instrumentation Grant Program;

specifically, grant number(s) S10RR023401, S10RR019307, S10RR
019254, S10RR023043.
*Correspondence to: Anders M. Fjell, Department of Psychology,
Pb. 1094 Blindern, 0317 Oslo, Norway.
E-mail: andersmf@psykologi.uio.no

Received for publication 31 May 2016; Revised 17 August 2016;
Accepted 31 August 2016.

DOI: 10.1002/hbm.23403
Published online 00 Month 2016 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 00:00–00 (2016) r

VC 2016 Wiley Periodicals, Inc.



changes in SC and FC are not necessarily strongly correlated. Hum Brain Mapp 00:000–000, 2016.
VC 2016 Wiley Periodicals, Inc.

Key words: structural connectivity; functional connectivity; longitudinal; magnetic resonance imaging;
aging; resting-state; tractography

r r

INTRODUCTION

Understanding the brain by mapping its functional and
structural connections has sparked enormous interest.
Functional (FC) and structural connectivity (SC) are closely
related at a conceptual level, with FC being intrinsically
dependent on SC for fast and efficient transfer of informa-
tion. However, it is not known to what degree FC is con-
strained by or related to characteristics of the major white
matter (WM) tracts of the brain, that is, their microstruc-
tural properties as measured by diffusion weighted imag-
ing (DWI), and whether FC and the microstructural
properties of SC change together over time. The aim of the
present study was to use longitudinal data to test this in
an adult lifespan sample where participants were scanned
twice, separated by 3.3 years. Here, FC is measured by
functional magnetic resonance imaging (fMRI), and
indexed as degree of synchronicity in brain activity
between different regions when the participant is not per-
forming any specific task in the scanner (resting-state
fMRI). Resting-state functional connectivity then reflects
spontaneously occurring synchronization of brain activity
between distant brain areas in the absence of an externally
presented task, and is typically interpreted as indexing
degree of communication between these areas. SC is used
to refer to diffusion characteristics of major WM tracts
identified by automated tractography, not to the actual
existence or absence of fiber tracts.

Several lines of evidence support a relationship between
FC and SC, for example, by convergence between FC and
SC of the default mode network (DMN) [Greicius et al.,
2009; Horn et al., 2014; Zhu et al., 2014], and demonstra-
tions that both FC and properties of SC differ between
groups of, for example, schizophrenic patients vs. controls
[Skudlarski et al., 2010; Zhou et al., 2008] and between
younger and older adults [Fling et al., 2012]. Still, the rela-
tionship is complex, and regions with few or no direct
structural connections can show high FC, indicating pres-
ence of indirect connections [Damoiseaux and Greicius,
2009; Honey et al., 2009]. This means that tight connections
can exist also between regions not connected by major
WM tracts, possibly through smaller connections not easily
captured by tractography or through common connections
with a third region. Nevertheless, changes in microstruc-
tural properties of major WM tracts are proposed to be a
major causal factor for FC changes in aging [Ferreira and
Busatto, 2013], supported by cross-sectional FC-SC correla-
tions where higher FC are related to higher FA or lower
MD or RD [Andrews-Hanna et al., 2007; Chen et al., 2009;

Davis et al., 2012; Lowe et al., 2008; Teipel et al., 2010; van
den Heuvel et al., 2008; Wang et al., 2009]. However, strik-
ing differences in reported age-trajectories for microstruc-
tural WM tract properties and FC indicate that the
relationship is unlikely to be simple. While age has a pro-
found effect on WM microstructure, with negative age-
relationship for fractional anisotropy (FA—degree of
anisotropy of diffusion of water molecules) and positive
for axial (AD—longitudinal, parallel or principal diffu-
sion), radial (RD—transverse diffusion, mean of the two
minor axes of diffusion) and mean (MD—mean diffusion
across all three axes) diffusivity [Bennett and Madden,
2014; Lockhart and DeCarli, 2014; Salat et al., 2005a,b; Sex-
ton et al., in press; Westlye et al., 2010c], both positive and
negative correlations between age and FC have been
reported [Antonenko and Floel, 2014; Ferreira and Busatto,
2013]. Different age-trajectories for FC and WM micro-
structure may not be surprising, since FC and SC usually
are measured from tissue classes with different macro-
structural age-trajectories, that is, gray vs. white matter
[Walhovd et al., 2005, 2011]. Other lines of evidence indi-
cating a complex relationship between SC and FC are
reports of higher FC associated with lower WM integrity
[Hawellek et al., 2011] and that major WM tracts are con-
duits for smaller bundles that connect disparate functional
entities [Lehman et al., 2011]. Here, high FC has been
interpreted as reflecting less-differentiated patterns of neu-
ral activity, reduced cognitive efficiency, or anatomical dis-
connectivity leading to loss of functional diversity among
brain networks. For instance, lack of differentiation has
been proposed as a possible result of loss of flexibility in
the brain’s functional interactions, so that stronger appar-
ent functional connectivity could result from degradation
of structural connections due to specific regions more fre-
quently participating in prevalent patterns of global activi-
ty seen, for example, in DMN [Hawellek et al., 2011].

Further, several cross-sectional developmental studies
either did not observe strong relationships between micro-
structural WM properties and FC, or found that the rela-
tionships could change during development [Gordon
et al., 2011; Uddin et al., 2011]. For instance, one study of
the default mode network (DMN) found that FC in chil-
dren aged 7 to 9 years could reach adult-like levels despite
weak SC [Supekar et al., 2010].

To examine the relationship between FC and microstruc-
tural properties of major WM tracts at an individual level,
we measured FC and WM diffusion characteristics at two
time points separated by 3.3 years on average in 120 par-
ticipants, and tested whether they (a) related similarly to
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age, and (b) to what extent change in one connectivity
measure was related to change in the other. We hypothe-
sized partly different age-relationships for SC vs. FC, with
negative (FA) and positive (MD, RD, AD) relationships for
SC, accelerating in the last part of the age-range, and a
negative but weaker relationship for FC. Such changes
may be related to myelin disruption or loss, axonal injury
or other processes, but the exact neurobiological underpin-
nings still are controversial [see Sexton et al., in press], for
a more thorough review, see [Bennett and Madden, 2014].
Longitudinally, we hypothesized that changes in SC and
FC would be moderately related, especially within the
DMN. As these diffusion metrics are regarded as related
to the integrity of the WM tracts, changes in them would
entail that changes can also be expected in FC.

MATERIALS AND METHODS

Sample

The longitudinal sample was drawn from the ongoing
project Cognition and Plasticity through the Lifespan at the
Center for Lifespan Changes in Brain and Cognition
(LCBC), Department of Psychology, University of Oslo
[Storsve et al., 2014; Walhovd et al., 2014; Westlye et al.,
2010a,b]. All procedures were approved by the Regional
Ethical Committee of Southern Norway, and written con-
sent was obtained from all participants. For the first wave
of data collection, participants were recruited through
newspaper ads. Recruitment for the second wave was by
written invitation to the original participants. At both time
points, participants were screened with a health interview.
Participants were required to be right handed, fluent Nor-
wegian speakers, and have normal or corrected to normal
vision and normal hearing. At both time points, exclusion
criteria were history of injury or disease known to affect
central nervous system (CNS) function, including neurolog-
ical or psychiatric illness or serious head trauma, being
under psychiatric treatment, use of psychoactive drugs
known to affect CNS functioning, and MRI contraindica-
tions. Moreover, participants were required to score �26 on
the Mini Mental State Examination (MMSE) [Folstein et al.,
1975], have a Beck Depression Inventory (BDI) [Beck and
Steer, 1987] score �16, and obtain a normal IQ or above
(IQ� 85) on the Wechsler Abbreviated Scale of Intelligence
(WASI) [Wechsler, 1999]. At both time points scans were
evaluated by a neuroradiologist and were required to be
deemed free of significant injuries or conditions. At follow-
up, an additional set of inclusion criteria was employed:
MMSE change from time point one to time point
two< 10%; California Verbal Learning Test II – Alternative
Version (CVLT II) [Delis et al., 2000] immediate delay and
long delay T-score> 30; CVLT II immediate delay and long
delay change from time point one to time point two< 60%.

Two hundred and eighty-one participants completed
time point 1 (Tp1) assessment. For the follow-up study, 42

opted out, 18 could not be located, 3 did not participate
due to health reasons (the nature of these were not dis-
closed), and 3 had MRI contraindications, yielding a total
of 66 dropouts (35 females, mean (SD) age 5 47.3 (20.0)
years). Detailed dropout characteristics are published else-
where [Storsve et al., 2014]. Of the 215 participants that
completed MRI and neuropsychological testing at both
time points, 8 failed to meet one or more of the additional
inclusion criteria for the follow-up study described above,
4 did not have adequately processed diffusion MRI data,
and 2 were outliers (4 or more tracts showing change val-
ues >6 SD from mean). This resulted in a follow-up sam-
ple of 201 participants (118 females) aged 20–84 years at
Tp1, see [Storsve et al., 2014; Walhovd et al., 2014]. Age-
effects on the DTI measures in these participants have pre-
viously been published [Sexton et al., in press]. Of these,
resting-state fMRI was not acquired for the first 81, yield-
ing a sample of 120 with quality checked functional MRI
data and 117 with quality checked segmented diffusion
imaging data for both time points. The resting-state Func-
tional Connectivity (rsFC) data in relation to aging has
been described in a previous publication. Due to previous
reports showing different rsFC change-patterns in younger
and middle-aged vs. older participants [Fjell et al., 2015,
2016b], for some analyses, the sample was split in two
age-groups. Sample descriptives are provided in Table I,
with information about sex distribution across 10 year age
bins provided in Supplemental Table I.

MRI Acquisition and Analysis

Imaging data was collected using a 12-channel head coil
on a 1.5 T Siemens Avanto scanner (Siemens Medical Solu-
tions; Erlagen, Germany) at Rikshospitalet, Oslo University
Hospital. The same scanner and sequences were used at
both time-points. The pulse sequences used had the fol-
lowing parameters:

For structural segmentation: The pulse sequence used for
morphometric analyses included two repetitions of a 160
slices sagittal T1-weighted magnetization prepared rapid
gradient echo (MPRAGE) sequences with the following

TABLE I. Sample descriptives

Young &
middle-aged Older adults Sig

N 64 56
Age 32.9 (23–52) 71.6 (63–86) *
Sex (females/males) 40/24 29/27
Education 15.9 (12–23) 16.5 (8–26)
IQ 119 (101–133) 120 (90–146)
MMSE 29.6 (27–30) 29.0 (26–30) *
Follow-up interval 3.4 (2.7–4.0) 3.1 (2.8–3.8) *

Age, IQ, and MMSE values from Tp2, education from Tp1. Mean
(range) values are provided.
*P< 0.05.
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parameters: repetition time(TR)/echo time(TE)/time to
inversion(TI)/flip angle(FA)5 2,400 ms/3.61 ms/1,000
ms/88, matrix 5 192 3 192, field of view (FOV) 5 240,
voxel size 5 1.25 3 1.25 3 1.20 mm, scan time 4 min 42 s.

For structural connectivity: Diffusion-weighted MRI
(dMRI) was performed using a single-shot twice-refocused
spin-echo echo planar imaging pulse sequence optimized
to minimize eddy current-induced distortions (Reese et al.,
2003) (primary slice direction, axial; phase encoding direc-
tion, columns; repetition time, 8,200 ms; echo time, 82 ms;
voxel size, 2.0 mm isotropic; number of slices, 64; FOV,
256; matric size, 128 3 128 3 64; b value, 700 s/mm2;
number of diffusion encoding gradients directions, 30;
number of b 5 0 images, 10; number of acquisitions, 2).
Acquisition time was 11 min 21 s.

For functional connectivity: The resting-state BOLD
sequence included 28 transversally oriented slices (no gap),
measured using a BOLD-sensitive T2*-weighted EPI
sequence (TR 5 3,000 ms, TE 5 70 ms, FA 5 908, voxel
size 5 3.44 3 3.44 3 4 mm, FOV 5 220, descending acquisi-
tion, GRAPPA acceleration factor 5 2), producing 100 vol-
umes and lasting for �5 min. Three dummy volumes were
collected at the start to avoid T1 saturation effects. Since the
baseline data were acquired some time ago, a 1.5 T scanner
and a BOLD scan consisting of 100 volumes was used. To
assess the comparability of the results with data from the
now more commonly used 3 T scanners and longer scan-
ning sequences, 44 young participants were scanned both
on the 1.5 T scanner with 100 volumes, and on a 3 T scan-
ner with 150 volumes on the same day. Previously reported
validation analyses [Fjell et al., 2016a] demonstrated excel-
lent convergence between network structure detected
across 1.5 and 3 T scanners and 100 vs. 150 volumes

Surface reconstruction and subcortical labeling were per-
formed at the Neuroimaging Analysis Laboratory,
Research Group for Lifespan Changes in Brain and Cogni-
tion, Department of Psychology, University of Oslo. Mor-
phometry analyses were performed by use of FreeSurfer v.
5.1 (http://surfer.nmr.mgh.harvard.edu/) [Dale et al.,
1999; Fischl and Dale, 2000; Fischl et al., 1999, 2002], please
see a detailed account elsewhere [Storsve et al., 2014; Wal-
hovd et al., 2014]. All volumes were inspected for accuracy
and minor manual edits were performed when needed by
a trained operator on the baseline images, usually restrict-
ed to removal of nonbrain tissue included within the corti-
cal boundary. For dMRI analyses, TRActs Constrained by
UnderLying Anatomy (TRACULA), part of FreeSurfer
v.5.3 was used to delineate major WM tracts of interest
[Yendiki et al., 2011]. This is a novel algorithm for auto-
mated global probabilistic tractography that estimates the
posterior probability of each pathway given the dMRI
data. The posterior probability is decomposed into a data
likelihood term, which uses the “ball-and-stick” model of
diffusion [Behrens et al., 2007], and a pathway prior term,
which incorporates prior anatomical knowledge on the
pathways from a set of training subjects. The segmentation

labels required by TRACULA were obtained by processing
the T1-weighted images of the study subjects with the
automated cortical parcellation and subcortical segmenta-
tion tools in FreeSurfer [Fischl et al., 2002, 2004a,b]. We
used the longitudinal version of TRACULA, which com-
putes the joint posterior probability of each pathway given
the dMRI data and anatomical segmentations of both time
points at once. This has been shown to improve both test-
retest reliability and sensitivity to longitudinal WM
changes, when compared to reconstructing the pathways
at each time point independently [Yendiki et al., 2016]. All
pathways reconstructed by TRACULA were included in
the analyses, that is, in each hemisphere the anterior tha-
lamic radiation (ATR), the cingulum angular bundle (CAB),
cingulum–cingulate gyrus bundle (CCG), the corticospinal
tract (CST), the inferior longitudinal fasciculus (ILFT), supe-
rior longitudinal fasciculus-temporal part (SLFT) and parie-
tal part (SLFP) and the uncinate fasciculus (UNC), in
addition to the two commissural tracts forceps major (Fmaj)
and minor (Fmin). Tracts and tract endings, averaged over
all participants in the study, are illustrated in Figure 1 [Fjell
et al., 2016b]. For some participants, specific tracts were not
reliably identified by Tracula (TRActs Constrained by
UnderLying Anatomy), that is, CST (8 missing), Fmaj (6
missing), ATR right (1 missing), SLFP right (2 missing),
SLFT right (1 missing), and UNC right (1 missing).

Resting-state functional imaging data was preprocessed
following Center for Lifespan Changes in Brain and Cogni-
tion’s custom analysis stream. Images were motion cor-
rected, slice timing corrected, and smoothed (5 mm
FWHM) in volume space using FSL’s FMRI Expert Analysis
Tool (FEAT; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Then,
FSL’s Multivariate Exploratory Linear Optimized Decompo-
sition into Independent Components (MELODIC) was used
in combination with FMRIB’s ICA-based Xnoiseifier (FIX) to
auto-classify independent components into signal compo-
nents (brain activity) and noise components (e.g., motion,
nonneuronal physiology, scanner artefacts) and remove
these noise components from the 4D fMRI data [Salimi-
Khorshidi et al., 2014]. The FIX classifier was not trained on
the actual data, but the standard classifier was used. To
ensure that this did not bias the data, we compared the per-
formance of the standard classifier with a classifier trained
on actual data using a dataset of our own, consisting of 32
adults between 18 and 80 years. Using the classifier trained
on the data, performance was 94.7% for signal components
detected as signal and 82.6% for noise components detected
as noise. In comparison, the standard classifier performed
at 91.6% and 74.3%, respectively. Further cleaning of data
was also performed. FreeSurfer-defined individually esti-
mated anatomical masks of cerebral white matter (WM)
and cerebrospinal fluid/lateral ventricles (CSF) were
resampled to each individual’s functional space. All ana-
tomical voxels that “constituted” a functional voxel had to
be labeled as WM or CSF for that functional voxel to be
considered a functional representation of noncortical tissue.
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Average time series were then extracted from (FIX-cleaned)
functional WM- and CSF-voxels, and were regressed out
of the FIX-cleaned 4D volume together with a set of 24
motion parameters estimated during preprocessing (rigid
body, their temporal derivatives, and the squares of all 12
resulting regressors). The WM and CSF confound regres-
sors were extracted from FIX-cleaned data, and thus have
the FIX cleanup applied. Following recent recommenda-
tions about noise removal from resting-state data [Hall-
quist et al., 2013] we band-pass filtered the data
(0.009–0.08 Hz) after regression of the confound variables
representing signal from WM- and CSF-voxels and the
motion parameters.

Individually estimated TRACULA tract endings were
converted to FreeSurfer’s average surface space and aver-
aged to produce seed points for calculation of rsFC
between tract endings. The tracts and endpoints were
thresholded at 10% before registering to FreeSurfer’s stan-
dard template cortical surface (fsaverage) and summed.
The endpoints were projected to the surface by sampling
4 mm on each side of the surface and smoothed by

FWHM of 2 mm. The labels were expanded into underly-
ing GM, and the top 25% of the summed vertices and vox-
els are displayed in Figure 1.

This group-representative set of seeds were resampled
into each participant’s surface space. All conversions of
seeds from FreeSurfers’ fsaverage surface space to individ-
ual surface space was performed using nonlinear surface-
based registration parameters automatically calculated
during FreeSurfer’s recon-all stream. The resulting individ-
ualized tract endings were converted into functional vol-
ume space using a projection factor of 0.5 from the
estimated white/gray matter boundary (i.e., half way into
the cortical sheet). rsFC between tract endings was calcu-
lated as the average correlation between all preprocessed
voxel time series in two seeds, each correlation being
variance-stabilized using the Fisher z-transformation [Sil-
ver and Dunlap, 1987].

To calculate rsFC within established cortical functional
networks, we took advantage of Yeo and colleagues’
(2011) cortical parcellation estimated by intrinsic functional
connectivity from 1,000 participants and made available in

Figure 1.

Tracts of interest and corresponding surface seed regions. Reconstructed mean pathways and

endpoints in the left hemisphere. For abbreviations, please see the main text.
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FreeSurfer’s average surface space (http://surfer.nmr.mgh.
harvard.edu/fswiki/CorticalParcellation_Yeo2011). The
parcellation scheme consists of 17 networks in each hemi-
sphere as well as values representing the estimated confi-
dence of each surface vertex belonging to its assigned
network. Spheres (six dilations around center vertex; 127
vertices) were drawn on the average surface around each
network’s highest confidence vertex (vertices if a network
consisted of several disconnected segments), resampled
into individual subject space, and correlated following
similar routines as for the tract ending analyses. This
resulted in rsFC estimates for each of the 17 networks
(mean across hemispheres) for each participant.

Statistical Analyses

For all analyses where relevant, age at time point 1,
head motion at both time points during BOLD and dMRI

scanning and interval between scans were included as
covariates of no interest. First, to delineate the relationship
between each connectivity measure and age, mean FA,
MD, RD, DA, and FC across all tracts, were computed.
Generalized Additive Mixed Models (GAMM), imple-
mented in R (www.r-project.org) using the package
“mgcv” [Wood, 2006], were used to map the age-
trajectories of each measure based on longitudinal and
cross-sectional observations, run through the PING data
portal [Bartsch et al., 2014]. A smoothing term for age was
compared to linear age models, and the

Akaike Information Criterion (AIC) [Akaike, 1974] and
the Bayesian Information Criterion (BIC) were used to
guide model selection and help guard against over-fitting.
GAMM takes advantage of both cross-sectional and longi-
tudinal information, and by use of the smoothing term for
age, is able to model any trajectory—linear or nonlinear—
of any form. An important point is that there are no
explicit assumptions about the shape of the relationships

Figure 2.

Age-trajectories for structural connectivity. Generalized Additive Mixed Models with a smooth

term for age were used to delineate the relationship between the global diffusion tensor imaging

measures and age, taking advantage of both the cross-sectional and the longitudinal observations.

The shaded area around the fit line represents 95% confidence interval of the mean.
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that are modeled, with nonparametric fits with relaxed
assumptions on the actual relationship between age and
the connectivity variable.

Next, mean FC between tract ending regions were aver-
aged across time points (within-tract FC), and compared
to FC between each tract ending region and all other tract
ending regions (between-tract FC) by paired-samples t-
tests. Mean values across time points were used in these
analyses to increase reliability compared to using a single
time point for the analyses.

Further, longitudinal changes in connectivity (FC and
SC measures) were quantified as the difference between

time points. To test the relationship between tract-wise
changes in structural and functional connectivity, within-
tract FC change was correlated with tract-wise changes in
diffusion parameters (FA, MD, RD, AD). This was done
for each of the tracts (8 in each hemisphere and two com-
missural). We chose this procedure instead of the General-
ized Additive Mixed Models (GAMM) approach for these
analyses to ensure that the results were caused by purely
longitudinal change and not being influenced by cross-
sectional effects. Correlations were also run between diffu-
sion change and between tract FC change to allow testing
specificity of connectivity relationships.

In addition to calculating FC from seed regions based
on structurally defined tracts, we also used the opposite
approach of quantifying FC in pre-established and well-
validated functional networks of high FC [Yeo et al., 2011].
Change across time points was calculated for all networks,
and correlated with dMRI change as described above.

Results were corrected for multiple comparisons by
Bonferroni corrections. Since the Bonferroni correction is too
conservative when outcome variables are mutually correlat-
ed, a corrected alpha is required. The corrected a-threshold
was adjusted as a function of the correlations between the
dependent variables (http://www.quantitativeskills.com/
sisa/calculations/bonfer.htm) [Perneger, 1998; Sankoh et al.,
1997], using the triangular matrix (without the diagonal)
of the correlations between the outcome variables, sum the
correlations and divide the result by the number of correla-
tions used.

RESULTS

Relationships to Age

First, the summary measures of cross-sectional FA, MD,
RD, DA, and FC, calculated as the mean value of all tracts,
were mapped to age by GAMM. Using a linear model, all
connectivity measures were significantly related to age

Figure 3.

Age-trajectories for functional connectivity. Generalized additive

mixed model with a smooth term for age was used to delineate

the relationship between the global resting-state functional con-

nectivity (FC) measure and age, taking advantage of both the

cross-sectional and the longitudinal observations. The shaded

area around the fit line represents 95% confidence interval of

the mean.

TABLE II. Degree of convergence between structural and functional connectivity

Within-tract rsFC Between-tract rsFC

Tract Mean SD Mean SD P r

Anterior thalamic radiation 0.09 0.08 0.11 0.07 * 0.86
Cingulum angular bundle 0.08 0.06 0.11 0.07 * 0.87
Cingulum–cingulum gyrus 0.27 0.13 0.18 0.10 * 0.95
Corticospinal tract 0.09 0.07 0.13 0.08 * 0.88
Forceps major 0.31 0.16 0.17 0.09 * 0.90
Forceps minor 0.22 0.11 0.15 0.09 * 0.94
Inferior long fasciculus 0.13 0.09 0.14 0.08 * 0.94
Superior long fasciculus, parietal 0.23 0.14 0.16 0.10 * 0.98
Superior long fasciculus. temporal 0.15 0.10 0.14 0.09 * 0.97
Uncinate 0.09 0.06 0.10 0.06 * 0.91

*Mean rsFC (z transformed correlations) different for within vs. between tracts (P< 0.05).
r: Correlation between rsFC “within” vs. “between” tracts, that is, the rsFC between the endpoints of a given tract (“within”) vs. the
endpoints of all other tracts (“between”).
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(FA t 5 26.39, P< 0.0001; MD t 5 7.01, P< 0.0001; RD
t 5 7.47, P< 0.0001; AD t 5 4.06, P< 0.0001; FC t 5 23.32,
P< 0.002). To test for nonlinearity, we replaced the
linear term by a smoothing term for age. The fit lines in
Figures 2 and 3 indicated an accelerated increase in MD,
RD, and AD with age, and a tendency for accelerated
reduction of FA among the oldest. FC appeared mostly
linearly related to age. For MD, RD and AD, the smooth
term yielded clearly lower AIC and BIC values (> 19
points), indicating that a nonlinear age-function best
described the data. For FA and FC, the AIC and BIC
values did not indicate that the nonlinear term yielded a
better fit to the data.

Convergence of Overall Structural-Functional

Connectivity Structure

FC between regions representing the ends of each tract
was calculated (within tract), and compared with FC
between each tract ending region and all other tract end-
ing regions (between tract). FC was averaged across time-
points and hemispheres. The results are shown in Table II.
Of 10 tracts, higher FC was seen for within vs. between
tract for five tracts (CCG, Fmaj, Fmin, SLFP, SLFT), while
higher between-tract FC was seen for the other five tracts
(ATR, CAB, CST, ILF, UNC). The correlations between FC

within vs. between tracts were high, with a median r of
0.91–0.94.

Relationship Between Tract-Wise Changes in

Structural and Functional Connectivity

For each of the tracts (eight in each hemisphere and two
commissural), FC changes within and between tracts were
correlated with tract-wise changes in diffusion parameters
(FA, MD, RD, AD), controlling for age, motion at both
time points and interval between scans. 10 correlations at
P< 0.05 uncorrected, ranging between 0.19 and 0.24 were
found, but none of these survived Bonferroni corrections
for number of comparisons.

Relationship Between Network-Wise Changes in

Structural and Functional Connectivity

In the tract-based analyses, DTI-based tractography was
used as basis for selecting FC ROI seeds. We also chose
the opposite approach by measuring FC in 17 pre-
established networks [Yeo et al., 2011]. For all networks,
significantly higher within than between FC was observed
(all Ps< 10 3 10217), validating the established networks
from an independent sample [Yeo et al., 2011] in the pre-
sent data (Table III). As can be seen, FC was much higher
when a network-approach was used compared to a tract
approach. This further underscores the finding that high

TABLE III. Within vs. between network connectivity

based on functional parcellations

Within-net-
work FC (z)

Between-net-
work FC (z)

Network Mean SD Mean SD P r

NW 1 0.88 0.37 0.36 0.19 * 0.61
NW 2 1.11 0.41 0.45 0.20 * 0.75
NW 3 0.72 0.38 0.42 0.22 * 0.81
NW 5 0.84 0.30 0.40 0.20 * 0.62
NW 6 0.56 0.24 0.38 0.19 * 0.89
NW 7 0.66 0.26 0.39 0.21 * 0.90
NW 8 0.52 0.23 0.36 0.19 * 0.91
NW 9 0.31 0.27 0.24 0.17 * 0.70
NW 11 0.78 0.25 0.38 0.18 * 0.74
NW 12 0.53 0.23 0.36 0.19 * 0.92
NW 13 0.57 0.23 0.35 0.19 * 0.88
NW 14 0.60 0.34 0.39 0.21 * 0.76
NW 15 0.76 0.23 0.40 0.18 * 0.78
NW 16 0.73 0.21 0.38 0.18 * 0.84
NW 17 0.61 0.22 0.35 0.19 * 0.81

The cerebral cortex was parcellated according to a 17 networks
scheme [Yeo et al., 2011], and FC was calculated within and
between networks. Two networks (NW 4 and NW 10) exists in
lefts hemisphere only, and was omitted from the analyses.
*Mean rsFC different for within vs. between networks (P< 0.05).
r: Correlation between rsFC “within” vs. “between” networks.

Figure 4.

Relationship between longitudinal structural and functional con-

nectivity change. Scatterplot of the relationship between change

in MD (Tp2 – Tp1) in the left cingulate-cingulate gyrus and

change in FC in Network 11 (precuneus and isthmus of the cin-

gulate) (Tp2 – Tp1). Red circles indicate young and middle-aged

participants (23–52 years) and yellow circles indicate older par-

ticipants (63–86 years). The line is fitted to the total sample.
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FC is not given for regions connected by high degree
of SC.

FC change across time points and hemispheres was cal-
culated for all networks, and correlated with SC change
for each tract, controlling for age, motion at both time
points and interval between scans. The total number of
tests performed was 17 networks 3 18 tracts 3 4 diffusion
measures, adding up to 1,224 tests. However, the intercor-
relations between FC change across tracts (r � 0.4), SC
change across tracts (r � 0.3) and FA/MD/RD/AD across
tracts (r � 0.6) indicate that the Bonferroni correction
threshold should be adjusted. With an approximated
median correlation of 0.45 between dependent variables,
this would yield an adjusted Bonferroni correction level of
P< 0.001. According to this threshold, the correlations
between Network 11 and MD (r 5 0.35) and RD (r 5 0.32)
change in left CCG survived corrections (Fig. 4).

DISCUSSION

The results confirm the hypothesis that structural con-
nectivity and microstructural properties of major WM
tracts relate differently to age. Further, within-tract FC was
low, and in general not higher than between-tract FC, indi-
cating loose constraints on FC from microstructural prop-
erties of WM tracts. Direct tests of the relationship
between change in WM microstructure and FC measures
confirmed that they were weakly related at best. However,
calculation of FC in predefined networks based on FC
alone yielded two significant FC-SC change relationships
in the DMN, in line with some previous cross-sectional
investigations [Greicius et al., 2009; Horn et al., 2014]. The
direction of the relationships—increased FC with increased
MD and RD—was not expected.

Relationships to Age

The age-trajectories for WM microstructure and FC were
not very similar. Reduced FA and increased MD, RD, and
AD with higher age, accelerating in the last part of the
age-span for MD, RD, and AD, are established in previous
literature [Bennett and Madden, 2014; Lockhart and
DeCarli, 2014; Salat et al., 2005a,b; Westlye et al., 2010c ],
including a previous report on a sample overlapping the
present where a voxel-based approach was used [Sexton
et al., in press]. These curves fit reasonably well with tra-
jectories for WM volume [Fjell et al., 2013; Walhovd et al.,
2005, 2011] and cortical myelin content [Grydeland et al.,
2013]. Thus, different measures of WM properties seem to
share some commonalities in their age-relationships. In
contrast, convergence has not been reached regarding the
age-trajectories of FC. Both reduced and increased FC with
age have been reported [Andrews-Hanna et al., 2007;
Antonenko and Floel, 2014; Ferreira and Busatto, 2013;
Geerligs et al., 2014; Mowinckel et al., 2012; Sala-Llonch
et al., 2014], often within the same study, indicating

network-specific effects. We found a moderate negative
effect of age on FC across tracts, with a basically linear
trend. This fits with a previous report [Fjell et al., 2015]
from the same sample where age-effects were tested across
the 17 established functional networks defined by Yeo
et al. [Yeo et al., 2011]. In that study, the direction of age-
effects did not vary across networks, indicating that the
summary measure used in the present article is valid for
testing age-effects.

Discrepancies in age-trajectories between FC and WM
microstructure could stem from the two measures being
derived from different tissue classes affected differently by
age. In contrast to the inverse U-shaped age-relationships of
WM, aging-studies of different GM properties, such as thick-
ness, volume, area, and curvature, all show negative and
often rather linear relationships with age [Fjell et al., 2014;
Grydeland et al., 2013; Hogstrom et al., 2013; Salat et al., 2004;
Storsve et al., 2014]. The age-trajectories of these different
WM vs. GM measures could transfer over to SC vs. FC. One
problem with this explanation is that FC-relationships often
are reported to be independent of structural GM properties
[Damoiseaux et al., 2008; Mowinckel et al., 2012; Onoda et al.,
2012]. Regardless of the neurobiological foundation, FC and
SC related differently to age, indicating that they are at least
partly independent measures.

Convergence of Overall Structural-Functional

Connectivity Structure

In a benchmark study, Greicius et al. defined DMN
based on FC data, and then performed DTI-based tractog-
raphy from the identified nodes [Greicius et al., 2009]. The
results showed good correspondence between FC and SC.
Recently, Horn et al. used a voxel-based anatomically
unconstrained approach. They found weak relationships
between FC and SC, except in regions associated with the
DMN [Horn et al., 2014]. The convergence of SC and FC is
not straightforward, with regions of few or no direct struc-
tural connections in some cases still showing high FC,
which could mean that FC in these cases is not mediated
by direct structural connections [Damoiseaux and Greicius,
2009; Honey et al., 2009]. Lehman et al. used macaques to
show that major WM tracts are conduits for many smaller
sub-bundles that connect different end regions [Lehman
et al., 2011]. For instance, the uncinate not only connects
the ventral prefrontal cortex (vPFC) and the temporal lobe
but also different vPFC regions and indirectly the ventral
and dorsal PFC by merging with other WM bundles.
Thus, when we segment and measure the major WM path-
ways, these include axons from different regions of the
cortex supporting widely different cognitive functions. We
did not observe consistently higher FC for within-tract
compared to between-tract regions, indicating that the lev-
el of detail in the projected cortical regions may be too
course to disentangle specific functional and structural
subentities. For some tracts, like ATR and CST, the low FC
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is likely also caused by one tract ending being situated in
subcortical regions. On the positive side, the four instances
of FC exceeding z 5 0.2 were found within-tract (CCG,
Fmaj, Fmin, and SLFP), with lower FC (z< 0.2) for all oth-
er tracts. Thus, there was some convergence between SC
and FC on the level of cortical anatomy, but the generally
low FC indicated that SC only very weakly constrained
FC. This is in line with a recent cross-species study finding
poor correspondence in connectivity from four different
imaging modalities [Reid et al., 2015]. In some respects, it
can be argued that SC has a clearer biological basis in the
brain than FC, as structural connections can be observed
with the naked eye based on MR images or autopsy sam-
ples. In contrast, FC represents a statistical property
inferred from covariance between brain regions that may
not be directly connected at all.

Relationship Between Changes in WM Tract

Microstructure and Functional Connectivity

There is a paucity of previous reports of FC-SC-change
relationships, but several previous cross-sectional studies
have reported positive FC-SC correlations [Andrews-Han-
na et al., 2007; Chen et al., 2009; Davis et al., 2012; Lowe
et al., 2008; Teipel et al., 2010; van den Heuvel et al., 2008;
Wang et al., 2009]. However, there are also reports of
higher FC being associated with lower WM integrity [Fling
et al., 2012; Hawellek et al., 2011]. We calculated FC
change using the two different seed-based approaches,
either defined by dMRI-based tractography or based on a
well-validated network parcellation approach by use of FC
data only [Yeo et al., 2011]. Using the tract approach, FC
and WM microstructural property changes were weakly
related. Selecting seed regions based on major WM tract
endings yielded low FC, possibly causing less reliable
change measures. Thus, we also used a network approach,
yielding significantly higher within- than between-network
FC. Now several correlations satisfied the uncorrected
exploration threshold of P< 0.01, and two also survived
corrections: MD and RD change in CCG and FC change in
Network 11 (isthmus cingulate-precuneus). This is likely
due to these structures’ critical involvement in the DMN
[Greicius et al., 2009; Horn et al., 2014]. However, FC
changes in other typical DMN regions did not correlate
with SC changes in relevant tracts.

Contrary to our expectations, increases in RD and MD were
related to relative increase in FC, although similar findings
have occasionally been reported in cross-sectional studies
[Fling et al., 2012; Hawellek et al., 2011]. Increased FC in risk
groups, such as Alzheimer disease patients, has been reported
[Adamczuk et al., in press; Agosta et al., 2012; Lim et al.,
2014], often interpreted as a compensatory response to nega-
tive brain events. One speculation is thus that relative increase
of isthmus cingulate-precuneus FC is a response to reduced
integrity of the CCG. If so, we would expect a mixture of rela-
tionships in opposite directions in different networks.

Contrary to this, most correlations were in the same direction,
that is, positive FC–MD/RD and negative FC—FA. A com-
pensation account would need compelling evidence, and may
not be relevant for the present findings.

Highest FC-WM tract-change correspondence was found
when based on FC-derived, not tract-derived, seed regions.
This may be related to high FC sometimes being found
between regions with little or no direct structural connec-
tions [Damoiseaux and Greicius, 2009; Honey et al., 2009].
Also, as discussed above, the large tract endings are likely
encapsulating several functionally distinct cortical regions
projecting through the same major tracts. Thus, FC is not
constrained by dMRI tractography to a degree that ensures
high FC between regions that connects through the same
major WM tract (Fig. 1).

Limitations

The test–retest reliability of resting-state FC is not always
high, with test–retest reliability ranging from low to high
[Braun et al., 2012; Ferreira and Busatto, 2013; Meindl et al.,
2010; Shehzad et al., 2009]. Thus, in the FC change—WM
microstructure change analyses, some of the variance will
be related to lack of reliability, which will naturally lower
the correlations observed. We do not know whether the
used 3.5 year interval is sufficient to enable the real changes
in brain connectivity to exceed the noise due to less than
perfect test-retest reliability, although at least for WM
microstructure, this should be sufficient [Sexton et al., in
press]. The issue of test-retest reliability will naturally apply
in some extent to any study of FC change-relationships,
and should ideally be tested in each study to allow estima-
tion of the impact of this source of error. Related, an ex
vivo primate study showed limited anatomical accuracy for
tractography methods, also potentially lowering the FC-
WM microstructure relationships [Thomas et al., 2014]. Fur-
ther, the low sampling density in the age-range 50–60 years
is not ideal in an adult life-span perspective. Also, since we
only had two time points, only linear change could be mea-
sures. However, it is possible that nonlinear relationships
between FC and WM microstructure exist, which would
not be captured by the current analyses. Finally, we used
two different approaches to test convergence between FC
and SC: calculations of FC between WM tract endings, and
correlations between WM microstructure changes and
changes in FC based on the established Yeo et al. parcella-
tion scheme [Yeo et al., 2011]. However a third option was
not attempted—to do structural tractography using the
regions from the Yeo parcellation as seed points. This could
potentially have yielded better correspondence between FC
and WM microstructural changes.

CONCLUSION

Regions with tight structural couplings, as indexed by
dMRI tractography, were generally weakly related in
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terms of FC as measured by rs-fMRI. The longitudinal
analyses showed that the relationship between WM micro-
structure and FC change was strongest for regions of the
DMN, and weakest when the FC measures were con-
strained by SC measures. Anatomical alignment of struc-
tural and functional connectivity measures seemed
restricted to specific networks and tracts, and convergence
at the aggregate level of anatomical organization did not
entail that changes in WM microstructure and FC neces-
sarily were correlated. It is possible that relationships
between WM tract properties and FC are stronger in other
populations, but the present results indicate weak relation-
ships in healthy participants across the adult life-span.
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