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Abstract 

Objective: To test the hypothesis that worse self-reported sleep relates to reduced 

hippocampal integrity as indexed by increased intra-hippocampal water diffusion, and 

that this relationship is stronger in the presence of β-amyloid (Aβ) accumulation, a 

marker of Alzheimer’s disease (AD) pathology.  

Methods. Two-hundred and fifty-one participants, aged 19-81 years, completed the 

Pittsburgh Sleep Quality Index, and 2 diffusion tensor imaging sessions, on average 

3 years apart, allowing estimates of decline in hippocampal microstructural integrity 

as indexed by increased mean diffusivity (MD). We used the delayed recall from the 

California Verbal Learning Test to measure memory change. 18F-Flutemetamol PET, 

in 108 participants above 44 years of age, yielded 23 Aβ positive cases. Genotyping 

enabled controlling for APOE ε4 status, and polygenic scores for sleep efficiency and 

AD. 

Results. Worse global sleep quality and sleep efficiency related to more rapid 

reduction in hippocampal microstructural integrity over time. Focusing on sleep 

efficiency, this relationship was stronger in presence of cortical Aβ accumulation. 

Sleep efficiency also related to memory decline indirectly via hippocampal integrity 

decline. The results were not explained by genetic risk for sleep efficiency and AD. 

Conclusions. Poor self-reported sleep efficiency related to decline in hippocampal 

integrity, especially in the presence of Aβ accumulation. Poor sleep and hippocampal 

microstructural decline may partly explain memory decline in older adults with Aβ 

pathology. The relationships were not explained by genetic risk, and poor self-

reported sleep efficiency might constitute a risk factor for AD, although the causal 

mechanisms driving the of observed associations are unknown.  
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Individuals with sleep disturbances have increased risk for Alzheimer’s disease 

(AD)1, 2, and accumulation of β-amyloid (Aβ)3, 4. Aβ is modestly related to memory 

decline5, and studies have suggested that relationships between Aβ and memory 

partly depend on sleep6, 7. A critical role in this linkage of sleep to Aβ and memory 

may be played by the integrity of the hippocampus. While a consortium study showed 

that worse self-reported sleep related to hippocampal atrophy8, integrity measured by 

diffusion tensor imaging (DTI) may detect more subtle microstructural decline9, and 

hippocampal mean diffusivity (MD) has demonstrated particularly sensitive to 

memory10, 11. Sleep-hippocampal integrity relationships could also reflect effects of 

the APOE ε4 genotype12, or of common genetic variation affecting sleep and 

hippocampus13. Testing whether worse self-reported sleep relates to memory decline 

and more rapid reduction of hippocampal integrity while controlling for genetic 

variation, and whether such relationships are stronger in older adults with 

pathological levels of Aβ, will help us understand the role of sleep problems in early 

AD-related pathology. 

 

Here, in 251 cognitively normal participants aged 19-81 years, we asked whether 

self-reported sleep characteristics were associated with memory-related 

microstructural (MD) hippocampal integrity reduction over an average of 3 years. We 

hypothesized worse sleep to be related to stronger degeneration, particularly in 

individuals with cortical Aβ accumulation, and also when controlling for APOE ε4 and 

polygenic scores for sleep efficiency and AD14. To further assess self-reported sleep 

relations with memory decline, we also performed a meta-analysis using data from 

the Lifebrain consortium15. 

Methods 
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Sample. The sample was drawn from projects consisting of 2-6 study waves at the 

Center for Lifespan Changes in Brain and Cognition, Department of Psychology, 

University of Oslo, Norway. The Regional Ethical Committee of Southern Norway 

approved all procedures, and all participants consented in writing prior to 

commencement. A total of 251 participants were included, all community-dwelling 

with normal cognition (see Table 1 for detailed characteristics, see figure e-1 for 

attrition of participants). For the first wave of data collection, participants were 

recruited through advertisements. Recruitment for the follow-up assessments was by 

written invitation to the original participants. At each time point, participants 

underwent health interviews to ascertain eligibility. Participants were required to be 

right-handed, fluent Norwegian speakers, and have normal or corrected to normal 

vision and hearing. Exclusion criteria were history of injury, disease or psychoactive 

drug use affecting central nervous system function, including neurological or 

psychiatric illness or serious head trauma, or being under psychiatric treatment, as 

well as presence of contraindications to magnetic resonance imaging. On the Mini 

Mental State Examination (MMS)16, participants above 40 years scored ≥26, except 2 

participants aged 80 years scoring 25. At follow-up, 3 participants aged 42-63 years 

who scored ≥29 at baseline, were missing MMS. All participants who completed the 

Beck Depression Inventory (BDI) scored ≤16, except 4 participants, aged 24-45 at 

follow-up, scoring 18-24, respectively. Ninety-five participants aged above 68 years 

completed the Geriatric Depression Scale (GDS)17. All scored ≤ 9 except for 7 

participants. Of these, 5 participants aged 71-74 years scored 11-22 on follow-up. 

Two participants aged 77 and 73 years, scored 13 and 10, respectively, at baseline, 

but both scored at non-depression levels on follow-up. A depression score was 

missing for a total of 16 participants at one time point (14 participants, aged 19-77 
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years) or both (2 participants, aged 29 and 58 years). To account for potential 

influences of particularly depression, we undertook sensitivity analyses (see below). 

General cognitive abilities were assessed by Wechsler Abbreviated Scale of 

Intelligence (WASI)18. The grand mean full-scale IQ (mean across time points for 

those with full-scale IQ score at both time points) was 119 (SD=9; 3 participants 

lacked full-scale IQ scores at follow-up). A neuroradiologist deemed all included 

magnetic resonance imaging (MRI) scans free of significant injuries or pathological 

conditions. 

 

Figure 1 shows an overview over the study design. Similar to our previous work on 

self-reported sleep19, baseline MRI was administered between 2011 and 2016, and 

follow-up MRI between 2015 and 2018. PSQI was completed once by each 

participant, between 2012 and 2017, on average 0.6 (SD=0.8) years after baseline 

MRI (16 participants completed the PSQI on average 5 (SD=3.5) months before 

baseline MRI, while exact completion date was not available for 34 participants). The 

memory assessments were performed on average 13 (SD=22) days before the 

baseline MRI, and 26 (SD=30) days before the follow-up MRI, respectively. PET 

scanning was performed once in a subset of participants, between 2015 and 2018, 

on average 0.7 (SD=1) years before the MRI follow-up. 

 

[Insert Figure 1 about here] 

 

Sleep assessment. To assess sleep, we used the Pittsburgh Sleep Quality Index 

(PSQI)20. This self-reported index surveys sleep habits and quality of the last month. 

The PSQI yields one global sleep quality score, which is the sum of the score of 7 
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components: 1) quality, 2) latency, 3) duration, 4) habitual efficiency, 5) disturbance, 

6) use of sleeping medication, and 7) daytime dysfunction. Higher scores indicate 

lower sleep quality. In PSQI, efficiency is calculated as sleep duration (hours slept) 

divided by the number of hours spent in bed, times 100, and then given score of 0-3 

for >85%, 75-84%, 65-74%, and <65%, respectively20. We did not evaluate the sixth 

component as use of medication was an exclusion criterion (the component was 

included in calculation of the global score for consistency with previous studies). 

Although the PSQI asks about sleep patterns of the last month, here, as in our 

previous longitudinal work19, we take the PSQI to reflect relatively stable sleep 

patterns, an inference for which there is support in adults above 38 years21, 22. In line 

with this premise, the PSQI self-report was not necessarily completed in close 

proximity to the baseline MRI scan (see Table 1 for details). As shown in Table1, 

complete PSQI scores at one time point, and valid DTI scans at two time points, were 

available for 251 participants (61% female, mean age = 54, range: 19-81, standard 

deviation (SD) = 20 years). 

 

[Insert Table 1 about here] 

 

MRI acquisition. Diffusion tensor imaging scans were acquired at two Siemens 

scanners (Siemens Medical Solutions, Erlangen, Germany), a 1.5 T Avanto (n=64, 

70% female, mean age (SD, min-max) = 51 (13, 24-77) years), TR/TE=8200/81 ms, 

FOV=128, 60 diffusion-sensitizing gradients at a b-value of 700 s mm−2 and 2 

volumes without diffusion weighting (b-value = 0)), and 3T Skyra scanner (n=187, 

58% female, mean age (SD, min-max) = 55 (22, 19-81) years), TR/TE=9200/87 ms, 

FOV=130, 64 diffusion-sensitizing gradients at a b-value of 1000 s mm−2 and 1 
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volume without diffusion weighting. The sequences and scanner were the same 

across the two time points for each participant. 

 

Preprocessing. The diffusion-weighted data were analyzed using the FMRIB 

Software Library, and included susceptibility-induced field correction with topup 

(Andersson et al., 2003), and correction for head motion, signal dropout, eddy 

current-induced fields using eddy 23, 24. After removing nonbrain tissue, eigenvalue 

maps were computed. We defined mean diffusivity (MD) as the mean of the three 

eigenvalues. We employed a DTI-derived measure as results indicate that DTI can 

detect subtle effects in cellular microstructure, which has previously proven sensitive 

to age-related lifespan changes25, and particularly hippocampal MD has been shown 

to provide increased sensitivity to memory10, 11. 

 

Hippocampus segmentation and DTI registration. The T1-weighted image was 

automatically processed with FreeSurfer software suite (version 6.0.0), independently 

for each time point (as no co-registration across time points was necessary), yielding 

segmentation of left and right hippocampus26. To extract MD from the hippocampi in 

native DTI space for each participant, a B=0 volume from the diffusion data was 

registered to the T1-weighted image in FreeSurfer space with a within-subject, cross-

modal registration using a boundary-based cost function constrained to be 6 degrees 

of freedom27. The resulting registration matrix was inverted, and applied to the 

segmentation of the left and right hippocampus, yielding hippocampus masks in 

native diffusion space. The masks were binarized using mri_binarize at a minimum 

voxel threshold of 1, for the most restricted masks compared with lower thresholds. 
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To reduce the number of tests, we calculated the average hippocampal MD based on 

the left and right hippocampus at each time point. 

 

Memory change. The participants underwent neuropsychological testing including 

memory assessment via the California Verbal Learning Test, second edition (CVLT-

II)28. In an effort to minimize practice effects due to repeated testing, we administered 

alternative versions containing different words and categories at follow-up. From this 

word learning test, we chose the arguably most sensitive measure of hippocampus-

dependent memory, namely long delay free recall, that is, the number of correctly 

recalled words after an approximately 30-minute delay (during which other cognitive 

tests were performed). All but 7 participants had valid scores at baseline and follow-

up on this delayed, free recall measure.  

 

Symmetrized percent change (SPC). As in our previous longitudinal sleep work19, we 

calculated symmetrized percent change (SPC), as symmetrized measures have 

been shown to be more robust, and with equal or greater statistical power29. For the 

average hippocampus value at baseline and follow-up (AH1 and AH2), the SPC was 

obtained by the following formula: SPC = 100 * (AH2 - AH1)/(AH2 + AH1). The same 

formula was used to obtain SPC measure for hippocampal volume and memory 

change. 

 

PET acquisition. A total of 108 participants (mean age (SD, min-max)=68.0 (8.7, 

44.4-80.8) years) underwent 18F-flutemetamol-PET scan, sensitive to Aβ 

accumulation30. Images were acquired on a General Electric Discovery PET/CT 690 

scanner at Aleris Hospital and Radiology, Oslo, Norway. A low-dose computerized 
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tomography scan was first performed for subsequent attenuation correction of the 

PET scan. Participants were injected with 200±20 MBq 18F-flutemetamol as a bolus 

and examined 90 minutes later. Three-dimensional dynamic data were acquired in 

list mode for 20 minutes, with the following parameters: 47 image planes, voxel size 

= 1.33 mm x 1.33 mm x 3.27 mm, field of view = 256 mm. The images were 

reconstructed using the VUEPoint HD Sharp iterative reconstruction algorithm. This 

algorithm adds resolution recovery in an iterative reconstruction loop by incorporating 

information about the PET detector response which improves resolution and contrast 

recovery compared with traditional analytic methods31. We used 4 iterations, 16 

subsets, time of flight, and a full width at half maximum Gaussian post-filter of 3 mm. 

As we were interested in the gross tracer uptake, we binned the data into a single 

frame, and submitted this static PET image to further pre-processing and value 

extraction. 

 

Genetic data. A subsample of 180 participants (66% females, mean age (SD, min-

max) = 53.9 (20.5, 20.1-80.9) years had genome-wide single nucleotide 

polymorphism (SNP) and manual APOE e4 genotypes available. Buccal swab and 

saliva samples were collected for DNA extraction followed by genome-wide 

genotyping using the “Global Screening Array” (Illumina, Inc.). APOE e4 (rs429358) 

status was determined using TaqMan (Thermo Fisher Scientific, Inc.) chemistry. 

Detailed information on DNA collection, quality control, genotyping, and imputation 

has been reported elsewhere32. The polygenic scores of sleep efficiency and AD 

were computed using summary statistics from previously published genome-wide 

association studies (GWAS) 33, 34. These statistics were based on SNPs with p-

values <0.01 in the respective GWAS, except for variants located in the extended 
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MHC region (build hg19; chr6:25,652,429-33,368,333), where we included the most 

significant SNP. After removing the APOE gene region (build hg19; 

chr19:44,909,011-45,462,650) for which we used the manually derived e4 (rs429358) 

genotypes instead, we used the software PLINK35 to implement the following steps: 

(i) clumping of the GWAS summary statistics by the –clump option with parameters  -

-clump-p1 1.0 –clump-p2 1.0 –clump-kb 500 –clump-r2 0.1. The linkage 

disequilibrium (LD) structure was based on the European subpopulation from the 

1000 Genomes Project Phase336. (ii) Deriving polygenic scores for our sample using 

the –score function. To control for population substructures, we computed the genetic 

ancestry factors using principal components methods37, and included only 

participants of European ancestry in the genetic subsample analysis. The polygenic 

score (PGS) for sleep efficiency was based on a genome-wide association study 

using accelerometer-derived mean sleep efficiency (calculated as proportion of sleep 

period time-window classified as sleep)34, and in our sample a higher PGS reflected 

a higher genetic propensity towards more efficient sleep. The AD PGS was based on 

a genome-wide meta-analysis of clinically diagnosed AD and AD-by-proxy (based on 

parental diagnoses)33, and in our sample a higher PGS reflected a higher AD risk. To 

test for the effect of APOE separately from the common genetic variation reflected by 

the polygenic scores, we estimated APOE e4 counts by determining the haplotypes 

of the two SNPs rs7412 and rs42935838, 39, coded as 0, 1, or 2 copies of the e4 allele, 

and binarized to e4-non-carrier or e4-carrier. 

 

PET pre-processing. We used PetSurfer, a set of tools within the FreeSurfer suite, for 

partial volume correction. Specifically, for each participant, we registered the static 

PET image to the anatomical T1-weighted image using boundary-based 
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registration27. This registration was inverted to get a high-resolution segmentation 

(upsample factor = 2) from the high-resolution MRI space in PET space, and 

simultaneously perform the partial volume correction with the Symmetric Geometric 

Transfer Matrix method, as recommended when using regions of interests (instead of 

vertex-wise) approach40, 41. This procedure yielded PET signal for each of the 68 

cortical regions in Desikan-Killiany atlas42. We used cortical regions as Ab has been 

reported to appear first in cortex43. The PET signal in each cortical region was 

divided by the mean signal of the cerebellum cortex to obtain standardized uptake 

value ratios (SUVR)44.  

 

Aβ status. As common in the literature44, we dichotomized the SUVR into high or low 

Aβ groups using a data-driven approach. We ran a principal component analysis on 

SUVR from the 68 cortical regions using the prcomp function (R package stats 

v3.6.1, values were zero-centered and scaled to have unit variance), and extracted 

the first component (which explained 66.7% of the variance, while, for comparison, 

the second component explained 7%). The cut-off between groups was determined 

using Gaussian mixture modeling (R package mclust v5.2). We fitted 18 models, 

ranging from 1 to 9 mixtures, allowing for either equal or unequal variance, and 

selected the model with the lowest Bayesian information criterion value. As 

previously reported in healthy older participants44, the optimal model consisted of a 2-

distribution model with unequal variance. Participants with a >.5 probability of 

belonging to the high Ab distribution were classified as Ab positive, and the 

remaining as Ab negative (Figure e-2). 
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Meta-analysis of self-reported sleep and memory change. To test the relationship 

between the relevant sleep variable (see below for selection criteria) and memory 

change, we also included data from the Lifebrain consortium 

(http://www.lifebrain.uio.no/)15, an EU-funded (H2020) project including participants 

from several major European brain studies: Berlin Study of Aging-II (BASE-II)45, 46, 

the BETULA project47, University of Barcelona brain studies48-50, and Whitehall-II51, 

yielding a total of 1196 participants. The samples and procedures used are described 

in detail elsewhere8. The data available in all projects were (i) self-reported sleep 

scores from one time point, and (ii) memory change score between two time points. 

All subsamples used the PSQI for sleep evaluation, except the Betula sample, which 

used the Karolinska Sleep Inventory (for details of conversion to PSQI scores, see8). 

The following memory tests were used: 30-minutes delayed free recall from the 

Verbal Learning and Memory Test (BASE-II), an immediate free recall of sentences 

(Betula), 30-minutes delayed recall from the Rey Auditory Verbal Learning Test 

(Barcelona), a short-term 20 word free recall test (Whitehall-II)52. 

 

Statistics. Our main question of a relationship between sleep and microstructural 

hippocampus change was addressed by multiple regression models testing each of 

the 7 PSQI variables (1 global and 6 components) versus hippocampal MD change. 

To correct for the multiple tests in this analysis, we adjusted the 7 resulting p-values 

by applying false discovery rate (FDR)53 correction and the p.adjust function (R 

stats version 3.6.1). Head movement is a potential important confound in brain 

imaging studies. As a proxy measure of head movement during MRI diffusion 

scanning, we calculated temporal signal-to-noise ratio (tSNR) from the scans54. As 

expected, head movement increased with age (R2=0.40, p<0.001), and we included 
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tSNR in all hippocampal analyses to account for movement-related artifacts (see 

Figure 1B for overview of main regression models and corresponding covariates). 

We included interval between baseline and follow-up as covariate of no interest, in 

addition to age, and sex. As participants were drawn from various waves, we 

included number of prior visits as a covariate to account for potential learning effects 

on the memory task (please note that, as mentioned above, different versions were 

used at each visit). In the analyses of hippocampal MD change, we also included as 

covariates as no interest hippocampus volume at baseline MRI, and difference in 

movement and hippocampal volume between baseline and follow-up MRI. These 

covariates were included to (i) assess microstructural effects specifically, and (ii) to 

correct for volume differences potentially leading to differences in partial volume 

effects. For the one hippocampal volume analysis run to compare with previous 

studies, we also included estimated intracranial volume55. To test whether the 

relationships between sleep and hippocampal MD change was similar across the 

adult lifespan, we assessed the interaction between the PSQI measure and age. To 

test for mediation of hippocampal MD change, we performed a mediation analysis 

across 10000 bootstrapped samples (R package mediation v4.5.0)56, 57. To test for 

the relationship between sleep and memory change in the Lifebrain consortium data, 

partial correlations between sleep and memory change were calculated for each 

sample, correcting for age, sex, and interval between memory tests. We submitted 

the resulting correlations and corresponding sample sizes to a meta-analysis (R 

package meta v4.9-8). To illustrate the individual data points, and to provide a 

general measure of effect size, we extracted hippocampal MD SPC values and the 

PSQI measure of interest, removed the effects of the nuisance regressors, and 

plotted the resulting residuals, and reported their R2. For the analyses including 
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PGSs, the first 3 principal components of the genetic ancestry factors were included 

as covariates to correct for population substructures. To account for potential 

influences of depression and cognitive impairment, we undertook sensitivity analyses 

by excluding the 11 participants with a depression score exceeding either 16 (BDI) or 

9 (GDS), and the 2 participants with an MMS score of 25, and assessed the 

similarities with the results based on the full sample. 

 

Data Availability Policy 

The data supporting the results of the current study are available from the 

corresponding author on reasonable request, given appropriate ethical and data 

protection approvals. Requests for data included in the Lifebrain meta-analysis can 

be submitted to the relevant principal investigators of each study. Contact information 

can be obtained from the corresponding author. 

 

Results 

Sleep and age. Summary measures of the PSQI variables can be found in Table 1, 

together with the correlations between PSQI variables, and between PSQI variables 

and age. The overall global score, duration, efficiency, disturbance, and daytime 

dysfunction, but not quality and latency, showed significant relationships with age. 

 

Microstructural Hippocampal Change and Memory change. As shown in Figure 

2A, hippocampal microstructural change related to memory change (p=0.0032, 

R2=0.035) after accounting for covariates. As hypothesized, higher hippocampal MD 

change values, interpreted as reduced structural integrity58, related to more memory 

decline. As seen in Figure e-3, excluding potential outliers (defined as a score 
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deviating from the median by >3 interquartile ranges) yielded a numerically weaker 

effect (p=0.052, R2=0.016), which was stronger (p= 0.038) when allowing older adults 

to have a different slope by accounting for the interaction between memory and age, 

although the interaction term itself showed no effect (p= 0.372). 

 

[Insert Figure 2 about here] 

 

Sleep and Microstructural Hippocampal Change. We found a relationship 

between hippocampal MD change and 2 of the 7 self-reported sleep measures, 

namely the global PSQI score (FDR-corrected p (pFDR)<0.05, R2=0.030, uncorrected 

p (puncorr)=0.007), and sleep efficiency (pFDR<0.05, R2=0.025, puncorr=0.014). As 

hypothesized, the relationships, shown in Figure e-4 and Figure 2B, respectively, 

revealed that participants with poorer sleep (higher scores) showed more increase in 

hippocampal MD. The relationship did not differ across the age range (for the 

interaction term sleep × age, the lowest uncorrected p-value was 0.37). For 

comparison with previous studies, we performed 2 additional analyses: (i) we re-ran 

the same analysis with hippocampal volume change (as opposed to hippocampal MD 

change in the main analyses) as the dependent variable. This analysis showed no 

relationships, but the lowest p-value was seen for sleep efficiency (pFDR=0.471, 

puncorr=0.067). (ii) We tested whether any of the sleep variables related to 

microstructural properties of hippocampus at baseline only. This analysis did not 

reveal any relationships (lowest puncorr = 0.214). Together, these analyses showed 

that global sleep quality and sleep efficiency related to microstructural hippocampal 

change, independently of hippocampal volume and hippocampal volume change. As 
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the sleep efficiency measure conveys more specific information regarding sleep than 

the global sleep score, we selected this measure for further analyses. 

 

Sleep Efficiency and Memory change. As shown in Figure 2C, poor sleep 

efficiency was not strongly related to more memory decline (partial r=-0.11, p=0.073, 

R2=0.013). To test if this result accurately reflected the true relationship, we 

performed a meta-analysis of partial correlations obtained from sleep efficiency-

memory change testing in 5 samples from the Lifebrain consortium (see Methods for 

details). This analysis yielded a correlation of -0.078 (95% confidence intervals (CI) [-

0.13, -0.02]), Z=-2.70, p=0.007). The partial correlations obtained in the main sample 

was within this confidence interval, suggesting that a relationship between sleep 

efficiency and memory change may exist, but that it is of modest strength, and that a 

larger sample is needed to detect it. For comparison with previous studies, we tested 

in the main sample whether sleep efficiency related to memory at baseline. No such 

relation was found (partial r=-0.013, p=0.84). 

 

Sleep Efficiency, Microstructural Hippocampal Change, and Memory Change. 

To test whether hippocampal MD change mediated the relationships between sleep 

efficiency and memory change, we performed two additional analyses. First, we 

tested the relationship between hippocampal MD change and memory change, 

including sleep efficiency as a covariate. The relation was moderate (p=0.016). 

Second, we ran a mediation analysis (Figure 2D). The unstandardized indirect effect 

on memory change from sleep efficiency via hippocampal MD change was 0.42 × -

0.84 = -0.35. The median bootstrapped unstandardized indirect effect was also -0.35 

(p= 0.028, 95% CI [-0.83, -0.02], ρ at which the effect equals 0 was -0.16). The 
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median direct effect estimate (from sleep efficiency to memory change controlling 

hippocampal MD change) was -1.26 (p= 0.179). This result suggested that 

hippocampal MD change partly mediated the relationship between sleep efficiency 

and memory change. 

 

Sleep Efficiency, Hippocampal Change, and Genetic Effects. A subsample of 180 

participants had genotype data available, including APOE ε4 status, and two types of 

PGSs (calculated without variants in the APOE region). Figure e-5A shows the PGS 

for sleep efficiency at each level of the PSQI-derived sleep efficiency. This analysis 

showed that worse self-reported efficiency did not relate to lower genetic propensity 

for efficient sleep (partial r=-0.037, p=0.62). As shown in Figure e-5B, lower genetic 

propensity for efficient sleep related more strongly, but still very modestly, to 

hippocampal MD change (partial r=-0.13, p=0.086). Self-reported sleep efficiency still 

related to hippocampal MD change (p=0.035) when controlling for the sleep 

efficiency PGS, which showed a negligible unique effect on MD change (p=0.107). A 

total of 70 participants carried one or two APOE ε4 alleles. APOE ε4 status was not 

related to better sleep efficiency (r=-0.050, p=0.507), or hippocampal MD change 

(r=0.080, p=0.293), and when adding APOE ε4 status to the model together with the 

sleep efficiency PGS, PSQI sleep efficiency still related to hippocampal MD change 

(p=0.031). Figure e-6A shows the AD PGS at each level of the PSQI sleep 

efficiency, and Figure e-6B as a function of hippocampal MD change. Higher genetic 

risk for AD was not related to worse sleep efficiency, that is, higher PSQI scores 

(partial correlation r=0.023, p=0.761), or lower hippocampal MD change (partial r=-

0.059, p=0.445). When controlling for the AD PGS, sleep efficiency was still related 

to hippocampal MD change (p=0.019), with no effect of the AD polygenic score 
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(p=0.147). Also, when adding APOE ε4 carrier status to this model including AD 

PGS, sleep efficiency still related to hippocampal MD change (p=0.017). 

 

Sleep Efficiency, Hippocampal Change, and Aβ. In the subsample of 108 

participants with PET data, 23 participants were classified as Aβ positive (see Figure 

e-2 for details). As shown in Figure 3A, we found support for our hypothesis of a 

stronger relationship between sleep efficiency and hippocampal MD change in 

participants classified as Aβ positive (efficiency × Aβ interaction term p=0.021). The 

Aβ positive participants did not show different sleep efficiency (p=0.722), 

hippocampal MD decline (p=0.932), or memory decline (p=0.680). When repeating 

the analysis in the Aβ positive and negative groups separately, we observed a 

relationship between sleep efficiency and hippocampal MD change only in the Aβ 

positive (p=0.014), but not in the Aβ negative subgroup (n=85, p=0.414). 

 

[Insert Figure 3 about here] 

 

Sleep Efficiency, Hippocampal Change, Aβ, and Genetic Effects. A subsample of 

76 participants (mean (SD) age=69.3 (8.2) years, min-max 44-81 years) had both Aβ 

and genotype data. In this subset 24 participants, or 32%, had one or two APOE ε4 

alleles. First, we included the APOE ε4 status and PGSs for sleep efficiency to the 

initial model. The results demonstrated that sleep efficiency still related to 

hippocampal MD change differently for Aβ negative and positive participants (t=2.2, 

p=0.035). Here, we observed an effect of the PGS for sleep efficiency on 

hippocampal MD change (t=-2.3, p=0.027), with higher propensity of efficient sleep 

showing less MD hippocampal decline. APOE genotype showed no effect (t=0.4, 
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p=0.678). Second, we included APOE ε4 status and the AD PGS to the initial model, 

which did not alter the interaction of between sleep efficiency and Aβ (t=2.5, 

p=0.015). The AD PGS showed a very weak effect (t=-1.8, 0.083), while APOE ε4 

genotype showed no effect (t=0.7, p=0.487). Finally, we included all genetic 

information, that is, APOE ε4 status, and the PGSs for sleep efficiency and AD, 

respectively, in one model. As shown in Figure 3B, this analysis still revealed an 

interaction between sleep efficiency and Aβ on hippocampal MD change (t=2.1, 

p=0.015). There was again an effect of the sleep efficiency PGS (t=-2.3, p=0.028), 

but not of the AD PGS (t=-1.7, p=0.087), or APOE genotype (t=0.6, p=0.537).  

 

Sensitivity analyses. To rule out possible influence of extraneous variables on our 

results, particularly depression, we verified that, when excluding the 11 participants 

with high depression scores and the two with low MMS scores, the results remained 

highly similar. That is, sleep efficiency related to hippocampal MD change (p=0.012), 

and weakly to memory change (again partial r = -0.11), while the relationship 

between sleep efficiency and hippocampal MD change still differed depending on 

cortical Aβ accumulation (p=0.012). 

 

Discussion 

The results indicate that sleep efficiency and hippocampal microstructural decline are 

related, particularly in presence of cortical Aβ accumulation. This relationship does 

not appear to be explained by APOE genotype, or polygenic scores for sleep 

efficiency or AD. Sleep efficiency also related to memory reduction indirectly via 

hippocampal integrity decline. Although we cannot rule out that these Aβ-related 

correlations stem from unexplored factors such as tau deposition in the medial 
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temporal lobes, one possibility is that Aβ accumulation constitutes a vulnerability in 

the case of reduced hippocampal integrity, leading to both lower sleep efficiency and 

decline in episodic memory. 

 

As the hippocampal effects observed here were independent of baseline 

hippocampal volume and volume change, microstructural change in the 

hippocampus might be a particularly sensitive marker of early decline, 

complementary to atrophy. In support of this hypothesis, while one study has 

reported cross-sectional associations in 1201 adults (mean age 21 years) between 

the right hippocampal MD and sleep quality (but not sleep duration), two previous 

studies of 147 (overlapping with the current sample)19 and 6659 participants, 

respectively, did not observe relationships between sleep and hippocampal volume 

or atrophy. These findings also suggest larger samples may be needed to detect the 

sleep-atrophy relationships. In support of this notion, we showed in 3105 cognitively 

normal participants aged 18-90 years from the Lifebrain consortium, including 

participants from the present sample, that poorer sleep efficiency, as well as sleep 

quality, problems, and daytime tiredness, were related to greater hippocampal 

volume loss8. The current finding supports such a relationship between self-reported 

sleep and hippocampal change but extends previous knowledge by revealing 

independent intra-hippocampal reductions in microstructural integrity longitudinally.  

 

The underlying neurobiology of the microstructural hippocampal decline remains 

unclear, but may be due to decay of the dendritic architecture. In mice, hippocampal 

dendritic spine densities have been shown to be reduced both in aging60, and after 

sleep deprivation61. Hippocampal dendritic decay might also underlie the relations 
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observed here between microstructural hippocampus decline and memory 

reductions. In mice, hippocampal dendritic spine loss has been related with memory 

defects62. Over time, loss of spines and synapses might promote larger dendritic 

disruptions, which, in mice, has been detected via intra-hippocampal DTI, and linked 

with memory impairments63. Whether whole-hippocampal MD in humans also is 

influenced by such dendritic effects remain unknown, but these speculations could be 

tested using ultrahigh-resolution microstructural DTI64. 

 

The relationship between sleep and Aβ appears reciprocal, as Aβ increase after 

sleep deprivation65, while Aβ accumulation in turn increases wakefulness and alters 

sleep patterns66. Here, although Aβ status did not relate to sleep efficiency or 

hippocampus decline alone, the sleep-hippocampal decline relationship was 

significantly stronger in the Aβ positive participants. Echoing these result, we recently 

observed in a separate sample of older adults that both tau and YKL-40, a biomarker 

of inflammation and astroglial activation, related more strongly to the PSQI global 

score in Aβ positive than in Aβ negative participants67. These results raise the 

possibility that Aβ accumulation co-occurring with other adverse signs such as 

hippocampal decline or inflammation, signals sleep problems not observed with Aβ 

accumulation alone.  

 

As we observed that the effect of sleep efficiency on memory decline was mediated 

by higher hippocampal diffusivity, we hypothesize that hippocampal decline, when 

concomitant with Aβ accumulation, causes sleep problems, here in the form of poorer 

sleep efficiency. One potential mechanism might be that the hippocampal decline 

causes altered brain oscillations affecting sleep68. However, the current data does 
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not allow inferences that rule out the reverse causality, of sleep affecting 

hippocampal decline. That said, we find such a reverse pattern less likely as effects 

were specific for sleep efficiency, rather than sleep duration or quality which would be 

more likely drivers of possible sleep-generated causal effects. Similarly, we cannot 

rule out that a variable not assessed here can account for the observed 

correlations57. For instance, sleep spindles have been linked, in addition to Aβ, with 

tau4, and potentially AD-related tau is seen first in the locus coeruleus69. Activity in 

this region can alter sleep spindles, affecting memory consolidation70. To tease out 

potential causal pathways, studies could include Aβ-negative participants with 

healthy sleep patterns and no signs of hippocampal decline, and follow them over 

several years to assess changes in sleep patterns, hippocampal integrity, Aβ status, 

and memory performance, as well as tau, and measures of neuroinflammation such 

as YKL-40 or sTREM2. Intervention studies targeting for instance hippocampal-

dependent cognition71, and investigating similar markers could be a less costly, but 

more practical, future strategy. 

 

The relationships remained after controlling for polygenetic scores for sleep efficiency 

and AD and the presence of the APOE ε4 allele. APOE ε4 is a well-known risk factor 

for AD72, and studies have reported that healthy APOE ε4 carriers show more 

pronounced longitudinal hippocampal atrophy73, 74 and worse sleep quality75. In 

contrast, there are also reports of no relationship between hippocampal atrophy in 

cognitively healthy adults and AD genes from an exploratory GWAS76, and of lack of 

APOE effects on hippocampal volume77. Both for the APOE genotype and the PGSs, 

we observed relatively weak relationships with sleep efficiency and hippocampal 

change. This low correspondence must be further investigated and resolved before 
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we can draw the conclusion that the relationship between sleep efficiency and 

hippocampal decline is partly independent of genetics. 

 

Limitations of this study concern the use of a self-report measure of sleep, at one 

time point, instead of objective measures such as activity monitors, or 

polysomnography, collected repeatedly. Although self-reported sleep measures 

might provide more representative data on sleep than a single-night 

polysomnography78, a correlation of 0.47 has been reported between reported and 

measured sleep duration79. The modest nature of this correlation highlights the need 

for objective measures to assess sleep physiology. In future studies, a likely key is 

repeated measurements to get a more detailed picture of sleep patterns, as well as 

the inclusion of other biomarkers such as tau, and markers of neuroinflammation. 

Inclusion of such markers would also improve analyses of mediation, which here 

does not establish causality. As activity monitors were used in the GWAS from which 

the sleep efficiency PGS stems34, the inclusion of objective sleep measures will also 

likely shed further light on the relative contribution of sleep genetics and sleep 

behavior. Although the current sample is relatively large, the potentially complex 

interplay between Aβ positivity and other biomarkers of relatively low prevalence 

highlight the need for even larger sample sizes.  

 

Conclusion Section 

The results indicate that hippocampal microstructural decline related to sleep 

efficiency, and episodic memory change in cognitively normal older adults, 

particularly in Aβ positive participants. This relationship was not readily explained by 

genetic effects. Poor self-reported sleep efficiency might constitute a risk factor for 
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AD, and future studies need to address why sleep is related to more hippocampal 

decline in Aβ positive older adults even without dementia. 
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Tables 

Table 1. Participants demographics 

    Correlation 

 M SD  Range PSQIg Age 

Age, baseline (n=251, females=61%) 53.6 19.8 20-81 0.12* NA 

Sleep       

  Global 5.0 2.8 0-14 NA 0.12* 

  Quality 0.8 0.7 0-3 0.74** 0.04 

  Latency 1.0 0.8 0-3 0.73** -0.08 

  Duration 0.6 0.7 0-3 0.60** 0.14* 

  Efficiency 0.5 0.8 0-3 0.65** 0.21** 

  Disturbance 1.1 0.5 0-2 0.48** 0.15* 

  Daytime dysfunction 0.7 0.6 0-2 0.31** -0.25** 

CVLT, 30-min delayed recall (SPC, n=244) 0.08 10.5 -60-39 -0.12 -0.19** 

Interval MRI baseline to MRI follow-up 3.1 1.2 1-6 -0.08 -0.45** 

Head movement (tSNR, baseline) 5.9 0.6 4-7 -0.03 -0.63** 

Head movement (tSNR, baseline vs follow-up) 0.1 0.4 -1-2 0.01 0.15* 

Interval PSQI to follow-up MRI (years, n=216a) 2.5 1 1-5 -0.14b -0.55** 

Interval PET scan to follow-up MRI (years, n=108/9 aged 50-80 yeas) -0.7 1 -2-1 -0.02 NA 

Abbreviations: NA=not applicable; PSQI=Pittsburgh Sleep Quality Inventory; PSQIg= PSQI global score; tSNR=temporal signal 

to noise ratio. SPC=symmetrized percent change. **=p<0.001; *=p<0.05. amissing exact date for 14%. b P value=0.138 when 

controlling for age at baseline. 
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Figures 

 

Figure 1. Study overview.  

A. Design. B. Regression models. Covariates are named in dark gray. Abbreviations: Age=baseline 

MRI age; HC=hippocampus; HC volume=baseline hippocampal volume; tSNR=temporal signal to 

noise ratio, derived from DWI scans (see text for details); PSQI=Pittsburgh Sleep Quality Inventory; 

Aβ=β-amyloid; PGS=polygenic scores; GAF=genetic ancestry factor; # prior visits=number of prior 

visits in project (see text for details). 
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Figure 2. Sleep, and Decline in Microstructural Hippocampal, and Memory.  

A. Decline in memory related to MD increase in hippocampus (decline in structural integrity). Values 

are residualized after regressing out covariates (see Figure 1B). B. Sleep efficiency related to 

hippocampal MD change, independently of hippocampal volume and hippocampal volume change, 

after FDR-correction for multiple comparisons. C. Sleep efficiency correlated weakly with memory 

change (partial r=-0.11, correcting for age at baseline, interval, and sex). D. Average causal mediation 

effect, that is, the indirect effect of sleep on memory via hippocampus, was -0.35 (p<0.05). 
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Figure 3. Sleep efficiency, microstructural hippocampal decline, and Aβ 

accumulation. 

A. Efficiency related more strongly to microstructural hippocampal decline in participants with signs of 

cortical Aβ accumulation. B. This relationship remained when controlling for APOE ε4 status and PGS 

for sleep efficiency and AD, respectively. 
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Supplementary Figures 

 

Figure e-1. Attrition.  
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Figure e-2. Classification of Aβ negative and positive. 

Distributions of amyloid. The best fit was a two-distribution solution (with unequal 

variance), represented in different colours. Fit of the distributions overlaid together 

with actual density (black dotted line). SUVR=standardized uptake value ratios. 

Aβ negative sample: n=85 (60%F), mean (SD, min-max) age: 67.4 (9.1, 44.4-80.8) 

years. Aβ positive sample: n=23 (48%F), mean (SD, min-max) age: 70 (6.6, 51.1-

78.6) years. 
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Figure e-3. Sensitivity analysis.  

Hippocampal MD decline and memory decline when removing extreme (interquartile 

range*5) memory values. 
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Figure e-4. Global sleep quality related to hippocampal MD change. 
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Figure e-5. Self-reported sleep efficiency and polygenic scores (PGSs) for (A) sleep 

efficiency, and (B) AD. 
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Figure e-6. Hippocampal MD change and polygenic scores (PGSs) for (A) sleep 

efficiency, and (B) AD. 
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